Organization of Repeated DNA Elements in the Genome of the Cichlid Fish *Cichla kelberi* and Its Contributions to the Knowledge of Fish Genomes

W.G. Teixeira a I.A. Ferreira a D.C. Cabral-de-Mello a J. Mazzuchelli a
G.T. Valente a D. Pinhal a A.B. Poletto a P.C. Venere b C. Martins a

a Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
b Instituto Universitário do Araguaia, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil

In most genomes, repeated sequences comprise a large portion of the DNA content of the cells, and the variation in the genome size of different eukaryotes is often attributed to differences in the amount of these sequences [Cavalier-Smith, 1985; Brenner et al., 1993]. Recent advances in the study of non-coding, repeated DNA elements have shown that such sequences are extremely important to the structural and functional organization of the genome [Grady et al., 1992; Schueler et al., 2001], and that they play important and specific roles in various cellular processes [Wong and Choo, 2004]. Among the completely sequenced genomes, the repeated elements remain as gaps, due to the difficulty of correctly identifying their position and array within the genome. Even the chromosomes that have been reported ‘sequenced to completion’, have multiple gaps in their pericentromeric regions related to the presence of duplicated and repeated segments [Horvath et al., 2001]. A better understanding of the genome structure and function requires the comprehension of these repeated segments. In addition, the integration of DNA sequences with physical chromosome mapping of these repeated elements can provide a better landscape of the genome, which is not yet clearly defined even in those genomes that are completely sequenced. The repeated DNA sequences can also serve as good chromosome markers, which could be useful in studies of species evolution,
the identification of chromosomal rearrangements, sex identification and applied genetics.

Cichlid fishes have been the subject of increasing scientific interest because of their rapid adaptive radiation that has led to an extensive ecological diversity and because of their enormous importance to tropical and subtropical aquaculture. Most cichlid species, especially the South American ones, are poorly known, and most of the genetic/genomic information concerning cichlids has been derived from the Nile tilapia Oreochromis niloticus. Despite the morphological and ecological diversity of cichlid fish, most cyto genetic data, which are based upon the karyotype information from 135 species, only refer to the determination of haploid/diploid number. The African cichlids have a modal number of 44 chromosomes, whereas the Neotropical cichlids have 48 diploid chromosomes [Feldberg et al., 2003]. The genus Cichla (peacock bass or tucunaré) is a widely distributed, endemic Neotropical cichlid and consists of 15 species [Kullander and Ferreira, 2006] of great importance as a food resource and to sport fishing. Moreover, phylogenetic data have shown that this genus is the sister clade of all other groups in the Cichlinae sub-family (Neotropical clade) [Smith et al., 2008]. Despite the importance of Cichla species, only basic cyto genetic data, including chromosome number and morphology and the distribution of heterochromatin and NOR (nucleolus organizer regions) sites, have been published for 2 species of the genus [Thompson, 1979; Brinn et al., 2004]. The Cichla species have 48 diploid chromosomes in accordance with the modal chromosome number for the South American cichlids, but the chromosomal formulas differ from the rest of the cichlids due to the presence of only subtelo-acrocentric chromosomes in the karyotype.

To further our understanding on the organization of cichlid genomes, we have isolated and characterized several classes of repeated DNA elements from the genome of Cichla kelberi. Since some African cichlid species genomes are being completely sequenced [The International Cichlid Genome Consortium, 2006], it will be of particular interest to investigate the genome structure of South American cichlid species for future comparative analyses. For that reason, the nucleotide sequence and chromosomal distribution of repeated DNA elements were investigated in C. kelberi, which led to the discovery of new repeated elements and also contributed to our knowledge about fish genome organization.

Material and Methods

Animals, DNA Samples, Chromosome Preparation and Banding

Animal samples were collected from the Araguaia River (São Félix do Araguaia, MT, Brazil), according to Brazilian laws for environmental protection (wild collection permit, SISBIO/15729-1). Tissue samples were collected from the animals and stored in 100% ethanol, and the genomic DNA was extracted using standard phenol-chloroform procedures [Sambrook and Russel, 2001]. Metaphase chromosome spreads were prepared from anterior kidney cells with in vivo colchicine treatment [Bertollo et al., 1978]. The constitutive heterochromatin was detected using saline solution [Sumner, 1972], and NORs were stained with silver nitrate [Howell and Black, 1980].

Isolation of Repeated DNA Elements

Repeated DNA elements were isolated via PCR (Polymerase Chain Reaction) and restriction enzyme digestion of genomic DNA. The first class of repeated DNA elements that were isolated by PCR was the ribosomal RNA (rRNA) genes. Copies of the 18S rRNA gene were amplified with the primers 18Sf (5′-CCG TTG TGA TCG TTG AT) and 18Sr (5′-CCG AGG ACC ATC TCT TAC GC), which were designed based upon the sequence of the catfish Ictalurus punctatus (GenBank accession number AF021880) to amplify an approximately 1,400 bp DNA segment of the 18S rRNA gene. The 5S rRNA genes were isolated with the primers 5Sf (5′-TAC GCC CGA TCT CGT CCG ATC) and 5Sr (5′-CAG GGC TGT AGG GCC GTA AGC), which were designed from the 5S rRNA gene sequence from Salmo gairdnerii [Komiya and Takeamura, 1979] to amplify complete repeats of 5S rDNA [Martins and Galetti Jr., 1999].

The second repeated DNA class that was analyzed corresponds to the transposable element Tcl and to the retroelements Rex1, Rex3 and Rex6. They were isolated by PCR with the primer sets, as follows: the Tcl element primer Tcl (5′-TAC AGT GCC TCG CAT AAT TCA CC), which anneals to the inverse repeats that flank the transposase gene of the element [Leaver, 2001]; the Rex1 element primers Rex1f (5′-TCC TTC AGT GCC TCG AAC ACC) and Rex1r (5′-TCC TTC ATC AGC AGA AAG ATG CGT CTC) [Vollff et al., 2000]; the Rex3 element primers Rex3f (5′-CGG TTA YAA AGG GCA GCC CTG) and Rex3r (5′-TGG CAG ACN GGG GTG GTG GT) [Vollff et al., 1999]; and the Rex6 element primers Rex6f (5′-TAA AGC ATA CAT GGA GGC CCAC) and Rex6r (5′-GGT CCT CTA CCA GAG GCC TG) [Vollff et al., 2001].

Repeated DNA elements were also isolated using restriction enzyme digestion of whole genomic DNA. DNA samples (8 µg) were digested to completion with the endonucleases AflI, AluI, BclI, BglII, DraI, EcoRI, EcoRV, HaeIII, HindIII, MspI, SpI and Xbal and then electrophoresed in a 1% agarose gel. The endonuclease Xbal generated a band of approximately 650 bp, which was a candidate to contain repeated DNA elements, and that band was purified from the agarose gel for cloning.

Cloning, Sequencing and Sequence Analysis of Repeated DNAs

The PCR-generated amplicons of the transposon elements Tcl, Rex1, Rex3 and Rex6 were inserted in the plasmid pGEM-T (Promega) and the Xbal-generated DNA fragments were inserted in the plasmid vector pMOS (GE Healthcare Life Sciences). Ligation
products were transformed into DH5α *Escherichia coli* competent cells. Positive recombinant clones were recovered and stored for future analysis. The positive clones were sequenced on an ABI Prism 3100 DNA sequencer (Perkin-Elmer) with the ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer), and the sequences that were obtained were deposited in the NCBI database under the accession numbers FJ687584–FJ687590. The sequences were used for Blastn [Altschul et al., 1990] searches at the National Center for Biotechnology Information (NCBI) website (http://www.ncbi.nlm.nih.gov/blast) to check for any similarity of the isolated sequences to any known sequences that have been deposited in the nucleotide collection (nt/nr), whole-genome shotgun reads (WGS), genomic survey sequences (GSS) and high throughput genomic sequences (HTGS) databases of GenBank.

The sequences recovered from GenBank and the sequences obtained here were aligned with the software BioEdit 7.0.9 [Hall, 1999], and converted to PAUP format using the software DAMBE [Xia and Xie, 2001]. Evolutionary models of each group of sequences (i.e. *Tc1*, *Rex3*, *Rex6* and *Rck*) were determined using a hierarchical hypothesis test of alternative models implemented with Modeltest 3.7 [Posada and Crandall, 1998] together with software PAUP* beta version 4.0b10 [Swofford, 2002]. The nucleotide substitution model based on Hasegawa, Kishino and Yano (HKY) [Hasegawa et al., 1985] was suitable for *Rck*, *Rex6* and *Tc1* sequences; Kimura 80 (K2P) [Kimura, 1980] fit *Rex1* sequences and General time reversible (GTR) [Tavaré, 1986] properly match *Rex3* data. Models incorporating rate variation (G) and PINVAR with 4 G-distributed rate classes [Swofford et al., 1996] were utilized for all likelihood analyses. The Bayesian-likelihood method of phylogenetic analysis [Huelsenbeck et al., 2001] was applied to evaluate alternative tree topologies using MrBayes v.3.0 [Ronquist and Huelsenbeck, 2003]. A total of 1,000,000 generations sampled at every 100th generation were tested by 4 chains running at once. Majority-rule consensus trees were produced with the software TreeExplorer implemented in MEGA 4 [Tamura et al., 2007].

Results and Discussion

PCR and Nucleotide Sequence Analysis of Repeated DNAs

The isolated 18S rRNA gene fragment contains an ~1,400-bp internal segment of the gene. The 18S primers were successfully applied in several non-related fish species (data not shown), which demonstrated their applicability for the amplification of this gene for use as a probe for FISH. The physical chromosome mapping of the DNA fragment that was isolated with the primers 18Sf and 18Sr coincided with the NOR region, which confirmed that the PCR-isolated DNA segment corresponded to the 18S rRNA gene. The 5S rDNA repeats of ~230 bp were recovered by PCR with the primers 5Sf and 5Sr and were also used for FISH.

The PCR of the transposon *Tc1* element generated an electrophoretic DNA band of approximately 370 bp, which was cloned and sequenced. The nucleotide sequence of 4 clones was determined, and the consensus sequence revealed a 369-bp DNA fragment that was flanked by inverted repeats with similarity to the *Tc1* element and other dispersed sequences in several vertebrate genomes, including fish and amphibians. The *Tc1*-like isolated sequence corresponds to the 5′ flanking sequence of the transposase-coding region of the element [Leaver, 2001]. The *Tc1* transposon belongs to the *Tc1*-mariner superfamily and is exceptionally widespread among living organisms from protozoa to vertebrates [Ivics et al., 1996]. *Tc1* elements were first identified in the invertebrates *Caenorhabditis elegans* and *Drosophila* sp., and they share several structural similarities, such as the presence of long terminal inverted repeats (TIRs) with an identical 5/6-bp sequence at or near the end and an open reading frame that encodes a 347-amino acid transposase [Brezinsky et al., 1990; Anderson et al., 1992; Avancini et al., 1996].

An NCBI database search revealed the identification of *Tc1*-like sequences among several fish and amphibian species, and these were comparatively analyzed (fig. 1). The *Tc1*-like sequence of *C. kelberi* clustered with sequences of *Takifugu* (Tetraodontiformes), *Salmo* (Salmoniformes) and *Gasterosteus* (Gasterosteiformes) in a

Chromosome in situ Hybridization

Mitotic chromosomes were submitted to FISH (Fluorescence in situ hybridization) [Pinkel et al., 1986] using the PCR products from the 5S and 18S rRNA genes and clones containing the repetitive elements *Tc1*, *Rex1*, *Rex3*, *Rex6* and *Rck* as probes. The probes were labeled by nick translation with biotin-14-dATP for separate hybridization and with biotin-14-dATP (18S probe) and digoxigenin (55 probe) for simultaneous hybridization. The metaphase chromosome slides were incubated with RNase (40 µg/ml) for 1.5 h at 37°C. After the chromosomes DNA was denatured in 70% formamide, 2× SSC for 4 min at 70°C, the hybridization mixtures, which contained 100 ng of the denatured probe, 10 mg/ml dextran sulfate, 2× SSC and 50% formamide in a final volume of 30 µl, were dropped on the slides, and the hybridization was performed overnight at 37°C in a 2× SSC moist chamber. Post-hybridization washes were carried out at 37°C in 2× SSC, 50% formamide for 15 min, followed by a second wash in 2× SSC for 15 min and a final wash at room temperature in 4× SSC for 15 min. Detection of the biotin- and digoxigenin-labeled probes was carried out with Avidin-FITC (Sigma) and Anti-Dig-Rhodamine (Roche), respectively. Chromosomes were counterstained with propidium iodide (0.2%) or DAPI (0.01 mg/ml) diluted in antifade (Vector). Hybridized chromosomes were analyzed using an Olympus BX 61 microscope, and the images were captured with the Olympus DP70 digital camera with the software Image-Pro MC 6.0. Karyotypes were arranged in order of decreasing chromosome size. The extent of the hybridized signals was estimated as a percentage of the whole chromosomes using the software Image Tool.
separate branch that contained the cichlids Oreochromis niloticus and Astatotilapia burtoni. The Tc1 element has a distribution among the species that is inconsistent with the phylogenetic relationship of different fish groups and also with relationship of these fishes to amphibians. Such a result suggests that events of horizontal transmission could have occurred during the evolutionary history of the Tc1 element in vertebrates, as has been previously suggested for some organisms [Ivics et al., 1996; Leaver, 2001]. It seems most probable that the Tc1-like sequence isolated here might be a product of miniature inverted-repeat transposable elements (MITEs). These elements are short transposons (100–600 bp), which are distinguished from other non-autonomous elements by high

![Fig. 1. Maximum likelihood trees of Tc1, Rex1, Rex3 and Rex6 repeated elements among fishes and other vertebrates as obtained by Bayesian inference. The species names and NCBI entries are indicated. Bootstrap values above 70 are shown.](image-url)
copy numbers and length homogeneity, that are thought to have arisen by amplification of a single or a few progenitor copies. Presumably, the progenitor copy arose via deletion of a larger transposon during gap repair. In many cases, sequence similarity between MITEs and the closest autonomous element is restricted to the TIRs [Feschotte et al., 2002; Feschotte and Pritham, 2007]. Some MITEs have shown TIRs and target-site duplications (TSD) that are similar to those of the Tc1-mariner superfamily, which supports the idea that these particular MITEs might have originated from this family of transposons [Feschotte et al., 2002]. Recently, a strong similarity between the TIRs, the target-site preference of a MITE and a Tc1-like transposon family was identified in the genome of a fungus species [Feschotte and Pritham, 2007].

The short length, lack of a transposase gene and the high similarity with the TIRs of other Tc1 transposons of fish species suggest that the sequence isolated in this work is more closely related to a MITE than a Tc1 transposon. The Cichla genome probably contains both Tc1-like transposons and MITEs that are related to this transposon, but the primer might have amplified more MITEs than the full length transposable element.

The retrotransposons Rex1, Rex3 and Rex6 generated an electrophoretic DNA band of approximately 600 bp. The primer sets that were employed were very efficient in the amplification of these DNA fragments by PCR and have been employed in the isolation of these repeated elements in different fish groups [Capriglione et al., 2002; Ozouf-Costaz et al., 2004]. The PCR fragments obtained here were cloned and the nucleotide sequences were determined for 3 clones of each element that were aligned and a consensus sequence generated.

In general, Rex1 sequences of C. kelberi showed similarity higher than 80% to Rex1 elements that were previously identified in other vertebrates and also to other dispersed sequences in the genome of the Perciformes fish. The PCR-isolated Rex1 segment corresponds to the encoding domains 3–7 of the reverse transcriptase (RT) gene [Volff et al., 2000]. Relevant similarity of Rex1 to the fish orders Anguilliformes, Perciformes, Beloniformes, Cyprinodontiformes and Tetraodontiformes was detected (fig. 1). A detailed analysis of the Rex1 element was previously conducted among fish species, which demonstrated the presence of multiple ancient lineages that underwent several independent and recent bursts of retrotransposition within these fish genomes [Volff et al., 2000].

The obtained nucleotide segment of Rex3 transposon corresponds to the encoding domain 1, 2, 2A, A and B of the RT gene [Volff et al., 1999]. The C. kelberi Rex3 element contains sequences that have 85–92% similarity to the retrotransposon Rex3 of the cichlids Cichlasoma labrindens and O. niloticus and lower similarities (77–82%) to elements that are found in the teleost species of Beloniformes, Cyprinodontiformes, Cypriniformes, Esociformes, non-cichlid Perciformes, Scorpaeniformes and Tetraodontiformes (fig. 1). Previous studies have shown that this element is widely distributed within fish genomes [Volff et al., 2001; Ozouf-Costaz et al., 2004]. Cichlid species are organized in the same branch of the tree and the South American cichlids Cichlasoma labrindens and Cichla kelberi are organized in a branch that is distinct from that of the African cichlid O. niloticus (fig. 1). Segments of the Rex3 elements were previously isolated from the South American cichlid Astronotus ocellatus [Mazzuchelli and Martins, 2009], but these fragments corresponded to the 5’ flanking domain of the Rex3 element and do not correspond to the segment that was characterized for C. kelberi.

The obtained Rex6 sequences of C. kelberi correspond to the C-terminal part of the restriction enzyme-like endonuclease of the retrotransposon element [Volff et al., 2001]. The Rex6 element has been poorly investigated in vertebrates, and there are few nucleotide sequences available through NCBI. Therefore, our analysis will contribute additional information about the Rex6 element in the fish genome. The Rex6 element that was identified from the Cichla genome showed high similarity with related Rex6 elements from other Cichlidae species (C. labrindens, O. niloticus and A. burtoni) and from the Tetraodontiformes, Cyprinodontiformes and Beloniformes orders (fig. 1). The retrotransposon Rex6 was active during teleost evolution and successfully invaded the genomes of several fish species. This retrotransposon was also identified in the genome of the reptilian Geochelone pardalis (fig. 1).

The restriction DNA fragments that were generated by the enzyme XbaI were cloned, and the nucleotide sequence analysis of 5 positive clones revealed that 3 of the isolated sequences possessed a high nucleotide similarity to dispersed sequences in the genome of several fishes and 2 amphibian species. The most noticeable characteristic of this element was its similarity to flanking sequences of the RT gene of the fish Oryzias melastigma (NCBI accession number DQ286655). The similarity to dispersed sequences and to a transcriptase reverse gene suggested that the isolated sequence corresponded to a retrotransposon that we called RCK (Retrotransposon of C. kelberi) element. Although comparative analyses of the complete
Repeated DNAs in the Cichlid Fish
Cichla kelberi

RCk element of *C. kelberi* and *O. melastigma* TR sequence showed a low similarity (35–38%), a higher similarity (76–82%) was detected in a segment that corresponded to an internal sequence of 273 nucleotides. A Blast search with this RCk element identified 70–87% similarity to sequences from fish species that represent the orders Perciformes, Salmoniformes, Cypriniformes, Cyprinodontiformes, Gasterosteiformes, Beloniformes and Polypteriformes and 74–82% similarity to sequences from the amphibians *Xenopus tropicalis* and *Rana chensimensis* (fig. 2). The presence of an RCk element in fish and amphibians suggests that the origin of this element occurred early in the evolutionary history of vertebrates, before the divergence of the major groups. The RCk element seems to have several ancient lineages that gave origin to the diversity of sequences detected among fish orders. The RCk element was detected in the cichlid species *M. conophoros*, *L. fuelleborne*, *M. zebra* and *A. burtoni* (fig. 2).

Although fish genomes are more compact compared to those of mammals, a higher diversity among their retrotransposable elements is characteristic of their genomes when compared to the human and mouse genomes [Volf et al., 2003]. Given this, investigation of fish repeated DNA elements can contribute to the knowledge of their genomes, especially since these repeated elements remain as gaps even within those genomes that have been reported to be completely sequenced. These gaps exist due to the difficulty in the correct identification of the position, array and repeat number of these repeated DNA elements. In addition, some specific repeated DNA elements could also be applied as molecular markers to track the evolutionary history of particular clades.

Basic Cytogenetic Analysis

Metaphase chromosomes were obtained from 8 males and 5 females of *C. kelberi*. The presence of 48 subtelo-acrocentric (st/a) chromosomes was constant between the sexes (fig. 3a). The NOR regions were conserved in the terminal position of the long arm of chromosome pair 2, which contains a large secondary constriction (fig. 3a) and a strong mark that is visible by silver nitrate staining (fig. 3c). The heterochromatin was distributed mainly in the centromeric areas of most chromosomes in the complement (fig. 3b). Heterochromatic segments were also observed in coincidence with the NOR region and in an interstitial position on the long arm of chromosome pair 2, which is the NOR-bearing chromosome. The chromosome morphology and the heterochromatin distribution of *C. kelberi* are similar to that of *C. monoculus* and *C. temensis* from the Amazon region [Brinn et al., 2004].

The NOR location in the second pair was also observed in the *C. monoculus* karyotype, while this chromosomal marker occurs in the third pair in *C. temensis*, which indicates a variability of this character in the genera. Although the chromosome number (2n = 48) has been maintained during the diversification of South American cichlids, the presence of only subtelo-acrocentric chromosomal elements in the karyotype is exclusive to *Cichla*. The remaining cichlids, including the African ones, possess karyotypes with the presence of meta- and submetacentric chromosomes. The karyotype formula 2n = 48

Fig. 2. Maximum likelihood tree of RCk element among fishes and other vertebrates as obtained by Bayesian inference. The species names and NCBI entries are indicated. Bootstrap values above 70 are shown.
st/a elements is characteristic of Perciformes, which includes the groups that are related to Cichlidae, such as Sciaenidae [Feldberg et al., 1999; Accioly and Molina, 2008], Pomacentridae [Molina and Galetti Jr., 2002] and Haemulidae [Nirchio et al., 2007]. Such data suggest that Cichla retains the ancestral karyotype of the group. The ancestral karyotype could have undergone major changes in its macro-structure, which could have led to the extensive karyotype diversification that is currently observed among cichlids. Such an observation is consistent with several proposed phylogenies for the family [Smith et al., 2008], which generally include the genus Cichla in the most basal clade of the group.

Chromosome Physical Mapping of Repeated DNA Sequences

Ribosomal RNA genes are among the most mapped sequences in the chromosomes of fishes. The 18S rRNA genes of Cichla kelberi mapped in coincidence to the NOR regions in the long arm of chromosome pair 2, whereas the 5S rRNA genes were located in an interstitial position of a different chromosome pair (fig. 3d, e). The different chromosomal location of the 18S and 5S rRNA genes was based upon the heterochromatin presence in the NOR region that was positively stained after propidium iodide counterstaining of 5S rDNA hybridized metaphases (fig. 3e) or after double FISH with 18S and 5S probes (fig. 3f). No intra- or inter-individual variation in the number of rRNA gene sites was observed, which reflects the conserved pattern of the chromosomal macro-structure of the genus Cichla.

Ribosomal RNA genes were previously mapped on the chromosomes of the cichlids O. niloticus, Geophagus brasiliensis and Cichlasoma facetum. The 18S rRNA genes were located in the terminal position of the short arms of 6 chromosomes in O. niloticus [Martins et al., 2000] and in the short arms of one chromosome pair in G. brasiliensis and C. facetum [Vicari et al., 2006]. The 5S rRNA genes
were detected in 6 chromosomes of *O. niloticus*, being interstitially located on 2 chromosome pairs and in the terminal position of the short arm of one chromosome pair [Martins et al., 2002]. Only one chromosome pair of the species *G. brasiliensis* and *C. facetum* had an interstitial 5S site [Vicari et al., 2006]. Although the rRNA genes have been mapped in only a few cichlids, it is interesting to note that the African species *O. niloticus* possesses multiple 18S and 5S sites, whereas the South American species (*G. brasiliensis, C. facetum* and *C. kelberi*) possess only one chromosomal site for each gene class. Another interesting characteristic related to the chromosomal position of the rRNA genes sites is the fact that the 5S sites are located in an interstitial position within the cichlid chromosomes, with the exception of the one chromosomal site for *O. niloticus*, and the 18S sites were always located in terminal positions. These characteristics were also observed for several other fishes, which suggest that such a chromosomal pattern for the distribution of rRNA genes seems to be a trend in this vertebrate group.

The repeated elements *Rex1, Rex3, Rex6 and Tc1* were clustered predominantly in the centromere in coincidence with heterochromatic areas and also as small dispersed signals along most chromosomes (fig. 4). Although transposable elements are abundant at most centromeres and their flanking regions, the significance of such a distribution is not understood [Wong and Choo, 2004]. In addition to the compartmentalization within

Fig. 4. Distribution of the repeated elements *Rex1* (**a**), *Rex3* (**b**), *Rex6* (**c**), *Tc1* (**d**) and *RCk* (**e**) on *Cichla kelberi* chromosomes. Scale bar indicates 5 μm.
the centromeric heterochromatin, each element has a particular distribution pattern. The preferential occurrence of the retroelements in the centromeric heterochromatic region of *C. kelberi* chromosomes is a common feature that is observed among eukaryotes. This characteristic could be related to the involvement of repeated DNA elements with centromeric function [Dawe, 2003] or to the lower selective pressure that acts against repeated elements [Eickbush and Furano, 2002]. On the other hand, the repeated elements are also expected to accumulate in heterochromatin that is characterized by lower gene density and reduced recombination [Szauter, 1984]. Heterochromatin can reduce the probability of the elimination of inserted sequences by ectopic recombination, and this mechanism is believed to play a major role in controlling the number of transposable element copies [Charlesworth and Langley, 1989]. The negative selection that acts against the accumulation of repeated sequences in gene-rich euchromatin may also have an effect on the distribution of repeated elements [Eickbush and Furano, 2002; Volff et al., 2003]. Similar patterns of repeated DNA organization have already been described in the African cichlid *Oreochromis niloticus* [Ferreira and Martins, 2008], in the South American cichlid *Astronotus ocellatus* [Mazzuchelli and Martins, 2009], in other non-cichlid fishes [Ozouf-Costaz et al., 2004; Herrán et al., 2008] and in other animals [Mravinac et al., 2004; Alkan et al., 2007].

Rex1 and *Rex3* have similar chromosomal distributions as they are both centromeric and are both spread on the long euchromatic arms of the first and third chromosome pairs (fig. 4a, b). These elements occupy a considerable extent of the euchromatin of chromosomes 1 and 3 (table 1). Based upon observations in *Drosophila*, it has been hypothesized that the differences in the euchromatic/heterochromatic distribution of retrotransposons could be the outcome of an initial loss of euchromatic elements that is followed by a reinvasion of transposons [Busseau et al., 1994]. The similar distribution of the *Rex1* and *Rex3* elements suggests that these sequences could be evolving together, have cooperative activity within the *C. kelberi* genome and be related with regard to structural or functional aspects. The compartmentalization of *Rex1* and *Rex3* elements in the centromeres and heterochromatin was also observed in the fish *Nototthenia coriiceps* [Ozouf-Costaz et al., 2004]. The results observed for the distribution of *Rex1* and *Rex3* in the chromosomes of *C. kelberi*, however, direct a new approach to the study of the genomic organization of transposons. Considering the existence of a correlation between karyotype rearrangement and retrotransposon activity [Ozouf-Costaz et al., 2004], we could speculate that chromosomes 1 and 3 of *C. kelberi* have undergone rearrangement events during their evolutionary history. On the other hand, the repeated elements *Rex1* and *Rex3* could be accumulating in chromosomes 1 and 3 as a consequence of recombination suppression.

To the best of our knowledge, this report is the first description of the chromosomal physical mapping of retroelement *Rex6* in a vertebrate species. *Rex6* shows a diffuse pattern of localization and is not only compartmentalized to centromeric heterochromatin, but is also spread along the chromosomes of *C. kelberi* (fig. 4c). This indicates that *Rex6* localization is governed by distinct evolutionary mechanisms and can evolve independently of other repeated sequences.

Chromosomal mapping data on *Tc1*-like sequences in vertebrates is scarce, with these elements mapped in the chromosomes of the Antarctic ice-fish *Chionodraco hamatus* [Capriglione et al., 2002], the pufferfish *Tetraodon nigroviridis* [DaSilva et al., 2002] and the frog *Rana sculenta* [Pontecorvo et al., 2000]. In *C. kelberi*, this transposable element is observed in centromeres and dispersed along the chromosomal arms of most chromosomes of the complement (fig. 4d). This pattern is similar to the results that were observed in the other analyzed vertebrates. In *R. sculenta*, a sequence that originated from a *Tc1*-like element was organized in tandem arrays in the centromeres of few chromosomes [Pontecorvo et al., 2000]. Another example of such remarkable compartmentalization was observed in *T. nigroviridis*, where the *Tc1*-like elements were clustered in the heterochromatic short arms of 6 subtelocentric chromosome pairs [DaSilva et al., 2002].

The *RCk* transposable element had almost the same hybridization pattern as *Rex6*, with the exception of fewer signals in the pericentromeric region (fig. 4e). The

Table 1. Distribution, in percentage of chromatin extent, of the transposable elements *Rex1* and *Rex3* on the chromosomes of *C. kelberi*.

<table>
<thead>
<tr>
<th></th>
<th>Rex1, %</th>
<th>Rex3, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire chromosome set</td>
<td>39.6</td>
<td>33.9</td>
</tr>
<tr>
<td>Pericentromeric regions</td>
<td>33.3</td>
<td>28.1</td>
</tr>
<tr>
<td>Euchromatic areas</td>
<td>6.3</td>
<td>5.8</td>
</tr>
<tr>
<td>First chromosome pair</td>
<td>62.8</td>
<td>67.8</td>
</tr>
<tr>
<td>Third chromosome pair</td>
<td>66.4</td>
<td>47.03</td>
</tr>
</tbody>
</table>

Cytogenet Genome Res 2009;125:224–234

Teixeira et al.
weak hybridization of \(RCK \) might be related to the presence of small copy numbers of this retrotransposon within the genome of \(Cichla \). Given that \(RCK \) is distributed overall among fishes, however, such an element should be better investigated in other cichlids, at the very least. Compared to the other repeated elements that were investigated here, \(RCK \) was not compartmentalized in heterochromatin or in the centromeric areas, which suggests that different repeated element classes are governed by distinct mechanisms of evolution.

Conclusions

Considering that the transposable elements \(TcI \), \(RexI \), \(Rex3 \), \(Rex6 \) and \(RCK \) are widespread among fishes, their application as physical chromosome markers appears to hold great promise to contribute to our knowledge of fish cytogenetics. The integration of DNA sequences with physical chromosome mapping of repeated DNA elements can provide a better landscape of the genome, which is not yet clearly defined even in those completely sequenced genomes. Therefore, a complete understanding of the relationship between chromosome structure and function requires an understanding of the organization of the repeated portions of the genome. Given that some African cichlid genomes are being completely sequenced [The International Cichlid Genome Consortium, 2006], the genome structure of South American cichlid species is of particular interest for comparative analysis. Although cytogenetic studies have been carried out on a large number of fish species in the last 2 decades, such analyses were mainly focused on basic karyotype structure, and very little work has been performed on the organization of DNA sequences within chromosomes.

References

Avancini RMP, Walden KKO, Robertson HM: The genomes of most animals have multiple members of the \(TcI \) family of transposable elements. Genetica 98:131–140 (1996).

