UNIVERSIDADE ESTADUAL PAULISTA INSTITUTO DE BIOCIÊNCIAS CAMPUS DE BOTUCATU

IDENTIFICAÇÃO E CARACTERIZAÇÃO DE SEQÜÊNCIAS REPETIDAS DE DNA NO GENOMA DE PEIXES CICLÍDEOS DO GÊNERO CICHLA

WELLCY GONÇALVES TEIXEIRA

Dissertação apresentada ao Instituto de Biociências, Campus de Botucatu, UNESP, para obtenção do título de Mestre no Programa de Pós-graduação em Biologia Geral e Aplicada.

BOTUCATU – SP 2008

UNIVERSIDADE ESTADUAL PAULISTA INSTITUTO DE BIOCIÊNCIAS CAMPUS DE BOTUCATU

IDENTIFICAÇÃO E CARACTERIZAÇÃO DE SEQÜÊNCIAS REPETIDAS DE DNA NO GENOMA DE PEIXES CICLÍDEOS DO GÊNERO CICHLA

WELLCY GONÇALVES TEIXEIRA

ORIENTADOR: PROF. DR. CESAR MARTINS

Dissertação apresentada ao Instituto de Biociências, Campus de Botucatu, UNESP, para obtenção do título de Mestre no Programa de Pós-graduação em Biologia Geral e Aplicada.

BOTUCATU – SP 2008

Dedicatória

Ao desmedido amor dos meus pais Brandina Teixeira de Oliveira e Sady Gonçalves de Oliveira (in memorian). À torcida de meus irmãos Welldy e Wesley. Ao querido Marzio, pelo carinho, paciência e apoio incondicional sempre me dado. À minha persistência que nos momentos mais difíceis me fez seguir a diante.

É durante a realização de um trabalho que sentimos a necessidade de termos amigos que nos auxiliem, nos guiem e nos orientem. Aqui, expresso minha gratidão:

À Deus, pela certeza de que habitas em mim, tão certo quanto ar que eu respiro. Ao meu orientador Prof. Dr. Cesar Martins, por tudo o que me ensinou, me corrigiu, me orientou e pela convivência no dia a dia. A Profa. Dr. Adriane, pelo exemplo de pessoa, profissionalismo e pelas sugestões.

Aos Profs. Drs. Fausto Foresti e Claudio Oliveira, pelo exemplo como pesquisadores, por anos de pesquisas dedicados à genética de peixes. Ao Prof. Msc. Celso, pela confiança, pela amizade, pelos conselhos profissionais, enfim, pelo carinho paterno. Aos Professores Dr. Paulo Cesar Venere e Dr. Issakar Lima Souza pela amizade, conselhos e pelo incentivo em vir para Botucatu.

Aos colegas do recém criado Laboratório de Genômica Integrativa, Andréia Polleto, Carlos, Danillo, Guilherme (Kabelo) e Juliana e aos inúmeros companheiros do Laboratório de Biologia e Genética de Peixes: Adriana, Andréia Alves, Emanuel, Fabio, Fernanda Alves, Guilherme, Gleisy, Gustavo, Heraldo, Jefferson, Juliano (Koala), Karina, Kátia, Kelly, Konrado, Lessandra, Lígia, Luciana, Marina, Marisa, Marina, Marlon, Marcio, Patrícia, Ricardo Paiva, Tatiane e Waldo.

Ao colaborador assíduo desse trabalho e conselheiro de todos os momentos, Alex Tadeu Ferreira. Ao Luiz e Fábio pelas valiosas dicas e pela amizade. À Irani e Daniela, pela amizade e eterna paciência em esclarecer minhas dúvidas. Aos técnicos do Laboratório, Renato Devidé e Ricardo Teixeira. Às minhas amigas e companheiras: Ana Jackeline, Beatriz, Érika, Cássia e Joseane.

Ao Laboratório de Genômica Integrativa, ao Departamento de Morfologia, à Pós-graduação em Biologia Geral e Aplicada, ao Instituto de Biociências de Botucatu e à Universidade Estadual Paulista, pela estrutura cedida para a realização deste trabalho. Aos funcionários da pós-graduação Luciene, Maria Helena e Serginho, pela amizade, esclarecimentos em todas as solicitações. Também a todos os funcionários e professores do Departamento de Morfologia.

Enfim, a todos aqueles que me auxiliaram de alguma forma na elaboração desse trabalho. **Muito obrigada.**

Quando se vê já são seis horas! Quando se vê, já é sexta-feira... Quando se vê, já terminou o ano... Quando se vê, passaram-se 50 anos! Agora, é tarde demais para ser reprovado... Se me fosse dado, um dia, outra oportunidade, eu nem olhava o relógio Seguiria sempre em frente e iria jogando, pelo caminho, a casca dourada e inútil das horas... Dessa forma eu digo Não deixe de fazer algo que gosta devido à falta de tempo, a única falta que terá, será desse tempo que infelizmente não voltará mais. Mario Quintana

RESUMO

O genoma dos organismos eucariotos apresenta-se organizado em seqüências simples e repetidas. As següências repetidas de DNA estão presentes em centenas a milhares de cópias dispersas ou agrupadas no genoma e localizam-se preferencialmente em regiões heterocromáticas, desempenhando papel relevante na organização do genoma desses organismos. Nesse sentido, a realização de estudos genéticos básicos sobre a organização genômica dessas sequências repetidas é fundamental para uma melhor compreensão do seu papel biológico assim como o entendimento de sua dinâmica evolutiva entre os diversos grupos de vertebrados. Os Cichlidae constituem uma das mais especiosas famílias de peixes, com cerca de 3.000 espécies distribuídas pela América Central e do Sul, África, e sudeste da Índia. Este grupo passou por um rápido e extenso processo de radiação adaptativa ao longo dos tempos, constituindo-se em importantes entidades biológicas para a realização de estudos evolutivos. Dentre os Cichlidae, as espécies do gênero Cichla (tucunarés), com distribuição exclusiva na América do Sul, apresentam grande importância ecológica e econômica. No entanto, estudos genéticos envolvendo espécies desse gênero são ainda escassos. Assim, o presente trabalho teve por objetivo isolar e caracterizar sequências repetidas de DNA no genoma de Cichla kelberi. Elementos repetidos de DNA foram isolados por PCR (elementos Rex1, Rex3, Rex6 e Tc1) e digestão enzimática (elemento Tuc), sequenciados e mapeados cromossomicamente por FISH para o estudo de seu padrão de distribuição no genoma. O elemento Tuc apresentou elevada similaridade com sequências do gene da transcriptase reversa de Oryzias melastigma, o que sugere tratar-se de um elemento retrotransponível. Análises comparativas do elemento Tuc a bancos de sequência mostraram alta similaridade com sequências repetidas no genoma de diversas espécies de vertebrados, incluindo peixes, anfíbios e mamíferos. Os resultados de FISH mostraram um acúmulo dos elementos obtidos preferencialmente nos centrômeros de todos os cromossomos do complemento e eventuais marcações teloméricas. Extensos segmentos intersticiais foram observados em alguns cromossomos para o elemento Rex3. Estes resultados mostram uma distribuição preferencial dos elementos repetidos de DNA principalmente nos centrômeros, sugerindo que tais seqüências devam desempenhar um papel importante na estrutura organizacional e funcional do centrômero e. conseqüentemente, do genoma desta espécie.

Palavras-chave: seqüências repetidas, Cichlidae, *Cichla kelberi*, retrotransposons, hibridação *in situ*, evolução.

ABSTRACT

The genome of eucaryote organisms is organized into single and repetitive sequences. The repetitive DNA sequences are represented by hundreds to thousands of dispersed or tandem-arrayed copies preferentially localized on the heterochromatic regions, having important function on the genome organization of the organisms. Therefore, the development of basic genetic studies about the genome organization of these repetitive sequences are fundamental to a better comprehension of their biologic role and the understanding of their evolutionary dinamics. The Cichlidae are one of the most diverse fish families, having about 3.000 species distributed around Central and South America, Africa and Southeast India. This group underwent a large and rapid process of adaptative radiation, becoming an important biological model. Among the Cichlidae, the species of the genera Cichla (tucunarés), with exclusive distribution in South America, have a significative economic and ecologic importance. However genetic studies on species of this genera are scarce. Therefore, this work had the aim to isolate and characterize repetitive DNA sequences of the genome of Cichla kelberi. Repetitive DNA sequences were isolated using PCR (elements Rex1, Rex3, Rex6 and Tc1) and restriction digestion (element Tuc), sequenced and their genome distribution determined by FISH. The Tuc element showed high similarity to sequences of reverse transcriptase gene of the fish Oryzias melastigma, which suggests that such element correspond to an retrotransposon element. Comparative analysis of the Tuc element to DNA sequence data bank showed high similarity with repetitive sequences in the genome of several vertebrates, including fishes, amphibians and mammals. Results of FISH showed an accumulation of obtained elements preferentially in centromeres of all chromosomes of the complement, and few telomeric blocks in some chromosomes. Large interstitial chromosome blocks were detected for Rex3. These results showed a preferential distribution of repetitive DNA elements mainly in centromeres, suggesting that these sequences should play an important role in the structure and functional organizational of centromere and, thus in the genome of this species.

Key-Words: repetitive sequences, Cichlidae, *Cichla kelberi*, retrotransposon, *in situ* hybridization, evolution.

Lista de Figuras

Figura 1: Organização do genoma eucarioto modificado de Farah, 200715
Figura 2: Representação de diferentes grupos de retrotransposons LTR e Não-LTR. LTR,
repetição longa terminal; PR, protease; INT, integrase; RT, transcriptase reversa; RNAse H,
ribonuclease H; LINE, elemento nucleotídeo interpassado longo; SINE, elemento
nucleotídeo interpassado curto. Modificado de Kumar e Bennetzen (1999)21
Figura 3: Exemplar de Cichla kelberi
Figura 4: Gel de agarose 1% corado com brometo de etídeo apresentando o fragmento de
restrição produzido pela digestão do DNA total de Cichla kelberi com a endonuclease XbaI.
L- marcador de peso molecular em pares de bases. Amostras de 1 a 5 representam DNA
genômico digerido com as enzimas AluI, HaeIII, MspI, XbaI e EcoRI, respectivamente. A
seta indica a banda produzida após a digestão com a <i>Xbal</i>
Figura 5: Gel de agarose 1% corado com brometo de etídeo apresentando os produtos de
PCR representativos de clones recombinantes obtidos a partir da banda de 650 pb
produzida pela digestão com a enzima XbaI. L- marcador de peso molecular em pares de
bases (marcador 1kb plus- Invitrogen). As amostras 1, 3, 4, 6, 7, 8, 9, 11, 13 e 14
representam os clones positivos candidatos a conter o fragmento de DNA produto da
digestão com a <i>Xba</i> I
Figura 6: Seqüências de fragmento de DNA isolado por restrição enzimática60
Figura 7: Dendograma baseado nas análises de distância p obtido pelo programa ClustalW
online a partir das seqüências Tuc isoladas e de sequências obtidas do banco de dados do
NCBI. Neste dendograma, o nome das seqüências corresponde espécies da tabela 9. A barra
indica a distância genética e os valores de bootstrap encontram-se indicados nos nodos.
Valores de <i>bootstrap</i> abaixo de 50 foram omitidos64
Figura 8: Gel de agarose 1% corado com brometo de etídeo mostrando produtos de PCR
Figura 8 : Gel de agarose 1% corado com brometo de etídeo mostrando produtos de PCR obtidos com os <i>primers Rex1</i> (a), <i>Rex3</i> (b) e <i>Rex6</i> (c) a partir do DNA genômico de
Figura 8 : Gel de agarose 1% corado com brometo de etídeo mostrando produtos de PCR obtidos com os <i>primers Rex1</i> (a), <i>Rex3</i> (b) e <i>Rex6</i> (c) a partir do DNA genômico de representantes de <i>Cichla kelberi</i> (1-5), (1-8), (1-6). L – marcador de peso molecular em
Figura 8 : Gel de agarose 1% corado com brometo de etídeo mostrando produtos de PCR obtidos com os <i>primers Rex1</i> (a), <i>Rex3</i> (b) e <i>Rex6</i> (c) a partir do DNA genômico de representantes de <i>Cichla kelberi</i> (1-5), (1-8), (1-6). L – marcador de peso molecular em pares de bases
 Figura 8: Gel de agarose 1% corado com brometo de etídeo mostrando produtos de PCR obtidos com os <i>primers Rex1</i> (a), <i>Rex3</i> (b) e <i>Rex6</i> (c) a partir do DNA genômico de representantes de <i>Cichla kelberi</i> (1-5), (1-8), (1-6). L – marcador de peso molecular em pares de bases. Figura 9: Gel de agarose 1%, corado com brometo de etídio, evidenciando os produtos de
 Figura 8: Gel de agarose 1% corado com brometo de etídeo mostrando produtos de PCR obtidos com os <i>primers Rex1</i> (a), <i>Rex3</i> (b) e <i>Rex6</i> (c) a partir do DNA genômico de representantes de <i>Cichla kelberi</i> (1-5), (1-8), (1-6). L – marcador de peso molecular em pares de bases. Figura 9: Gel de agarose 1%, corado com brometo de etídio, evidenciando os produtos de PCR obtidos a partir do <i>primer Tc1</i> para exemplares de <i>Cichla kelberi</i> (1-4). L- marcador

Figura 10: Hibridação *in situ* fluorescente utilizando como sonda os retrotransposons *Rex1*(a), *Rex3*(b), *Rex6*(c), *Tc1*(d) e *Tuc* (e) nos cromossomos de *Cichla kelberi.....*72

Tabela 1: Compilação de dados relacionados à localização cromossômica de DNAr 5S nos
cromossomos dos peixes
Tabela 2: Compilação de dados relacionados ao isolamento e localização cromossômica de
DNAs satélites nos cromossomos dos peixes
Tabela 3: Compilação de dados relacionados ao isolamento e localização cromossômica de
elementos repetidos dispersos nos cromossomos dos peixes
Tabela 4: Espécies do gênero Cichla em ordem cronológica de descrição de acordo com
Kullander e Ferreira (2006)
Tabela 5: Seqüências dos primers utilizados na amplificação dos fragmentos dos
retrotransposons
Tabela 6: Seqüência do <i>primer</i> utilizado na amplificação dos fragmentos do transposon.51
Tabela 7: Composição nucleotídica dos clones isolados de Cichla kelberi por restrição
enzimática61
Tabela 8: Similaridade obtida junto ao NCBI com os clones TucXba1, TucXba6 e
TucXba11 isolados por restrição enzimática62
Tabela 9: Similaridade encontrada para o elemento Rex1 de Cichla kelberi em relação a
outras espécies de peixes67
Tabela 10: Similaridade encontrada para o elemento Rex3 de Cichla kelberi em relação a
outras espécies de peixes
Tabela 11: Similaridade encontrada para o elemento Rex6 de Cichla kelberi em relação a
outras espécies de peixes

RESUMO	
ABSTRACT	
LISTA DE FIGURAS	
LISTA DE TABELAS	
1. INTRODUÇÃO	
1.1. Seqüências repetidas de DNA1	3
1.2. Classificação das seqüências repetidas14	1
1.2.1. Seqüências repetidas em <i>tandem</i>	5
1.2.1.1. DNA satélite1	5
1.2.1.2. Minissatélite17	7
1.2.1.3. Microssatélite1	7
1.2.2. Seqüências repetidas dispersas	9
1.2.2.1. Elementos da classe I	9
1.2.2.2. Elementos da classe II	4
1.3. Elementos repetidos de DNA e seu papel como marcadores físicos	
cromossômicos para os peixes20	5
1.3.1. Genes ribossomais20	5
1.3.2. Elementos repetidos em <i>tandem</i>	9
1.3.3. Elementos repetidos dispersos	1
1.4. Biologia e evolução dos Cichlidae	3
1.4.1. O gênero <i>Cichla</i>	5
2. OBJETIVOS	3
3. MATERIAL E MÉTODOS	9
3.1. Material Biológico	9
3.2. Métodos)
3.2.1. Extração de DNA de tecidos40)
3.2.2. Visualização e quantificação do DNA em gel de agarose4	1
3.2.3. Isolamento de sequências repetidas por digestão enzimática4	1
3.2.4. Purificação dos fragmentos de DNA presente em gel de agarose42	2
3.2.5. Clonagem do DNA repetido	3
3.2.6. Amplificação por PCR do fragmento clonado44	1

3.2.7. Mini-preparações para a purificação de plasmídios recombinantes	
(Kit Wizard Plus Minipreps DNA Purification System-Promega)	45
3.2.8. Seqüenciamento	46
3.2.9. Isolamento de seqüências repetidas pela técnica de PCR	50
3.2.9.1. Amplificação dos retrotransposons Rex1, Rex3 e Rex6	50
3.2.9.2. Amplificação do Transposon <i>Tc1</i>	51
3.2.10. Análise das seqüências	52
3.2.11. Obtenção dos cromossomos mitóticos através de preparações diretas	53
3.2.12. Hibridação in situ por fluorescência-FISH	53
4. RESULTADOS E DISCUSSÃO	57
4.1. Isolamento e caracterização de seqüências repetidas no genoma de	
Cichla kelberi por restrição enzimática	57
4.2. Isolamento e caracterização de seqüências repetidas no genoma de	
Cichla kelberi por PCR	65
4.3. Mapeamento físico cromossômico por hibridação fluorescente in situ	
utilizando como sondas as sequências Rex1, Rex3, Rex6, Tc1 e Tuc	71
5. CONCLUSÕES	76
6. REFERÊNCIAS BIBLIOGRÁFICAS	77
7. ANEXOS	86
ANEXO I	86
ANEXO II	88
ANEXO III	89
ANEXO IV	90
ANEXO V	95
ANEXO VI	9 9

I ntrodução

1.1. Seqüências repetidas de DNA

O genoma dos organismos eucarióticos apresenta-se organizado em seqüências simples ou repetidas. DNAs cópia única ou com poucas cópias estão dispersos pelos cromossomos e compõem a maior parte dos genes funcionais de um organismo, embora algumas seqüências moderadamente repetidas também contenham genes (Lond e David, 1980). Já os DNAs repetidos constituem grandes frações do genoma eucarioto. As seqüências repetidas representam cerca de 95% do genoma de cebolas (Flavell *et al.*, 1974) e cerca de 50% ou mais do genoma humano (*The Genome International Sequencing Consortium*, 2001).

Durante muito tempo as seqüências repetidas de DNA foram consideradas "DNA lixo" (Doolittle e Sapienza, 1980) ou "DNA egoísta" (Nowak, 1994). Todavia, estudos têm demonstrado o equívoco desse conceito, já que várias funções têm sido atribuídas a essa classe de seqüências. Geralmente essas seqüências localizam-se em regiões pobres em genes, tais como as intergênicas e heterocromáticas, envolvendo em alguns casos até mesmo elementos transponíveis (Charlesworth *et al.*, 1994; Kidwell, 2002; Fisher *et al.*, 2004). Tem-se demonstrado que as seqüências repetidas são importantes na organização estrutural e variação do tamanho dos genomas (Schueler *et al.*, 2001), envolvendo-se em rearranjos cromossômicos como deleções, duplicações, inversões e translocações, responsáveis por grande parte da variação cariotípica de muitos grupos (Kidwell, 2002). Contudo, o papel mais importante dessas seqüências relaciona-se à manutenção e segregação do material nuclear, o que se infere, sobretudo em função de sua presença nos centrômeros e telômeros dos cromossomos de eucariotos.

A heterocromatina é encontrada nos centrômeros, telômeros e posições intersticiais ao longo dos braços cromossômicos. As seqüências repetidas presentes na heterocromatina centromérica desempenham um papel fundamental no comportamento dos cromossomos durante a divisão celular, devido a várias proteínas que se ligam por afinidade a estas seqüências (Csink e Henikoff, 1998). Além disso, a eucromatina, rica em genes, também pode conter algumas seqüências repetidas. No entanto, seqüências repetidas parecem causar mutações prejudiciais aos genes, sendo eventualmente eliminadas pela pressão seletiva (Deininger *et al.*, 2003). Além disso, vários estudos têm sugerido o envolvimento de seqüências repetidas nos processos de replicação do DNA (Li *et al.*,

2002), recombinação (Biet *et al.*, 1999), expressão gênica (Liu *et al.*, 2001) e diferenciação de cromossomos sexuais (Galetti Jr e Foresti, 1986, Parise-Maltempi *et al.*, 2007).

Considerando a gama de funções já assinaladas às seqüências repetidas, tornam-se claro o equívoco de um dia terem sido consideradas "DNA lixo". Adicionalmente, essas seqüências têm sido empregadas como ferramentas no estudo do genoma, prestando-se como marcadores cromossômicos para identificação de rearranjos, polimorfismos e contribuindo também em estudos de genética aplicada.

1.2. Classificação das seqüências repetidas

O DNA repetido é classificado em codificador e não-codificador. O codificador constitui as famílias multigênicas com grande número de cópias e possui função biológica bem definida. Um exemplo clássico é o das famílias multigênicas codificadoras de RNAs ribossomais (RNAr). Famílias multigênicas são constituídas por genes com notável similaridade estrutural, tanto no número quanto na organização de pares de bases, embora possam desempenhar funções diferentes. Acredita-se que essas famílias sejam formadas por uma série de duplicações durante sua evolução, e que o acúmulo de mutações ocorridas ao longo do tempo seja responsável pelas pequenas diferenças observadas hoje entre seus genes. Uma característica das famílias multigênicas é possuir considerável número de pseudogenes, muito semelhantes aos genes funcionais da mesma família, mas que perderam sua capacidade de expressão devido à mutações adquiridas (Farah, 2007). De acordo com Charlesworth *et al.* (1994) o DNA não-codificador (não transcrito) é composto por seqüências repetidas em *tandem* ou dispersas no genoma. As seqüências organizadas em *tandem* divididem-se em satélites, minissatélites e microssatélites, e as dispersas em transposons (Figura 1).

Figura 1. Organização do genoma eucarioto. Fonte: DNA Segredos & Mistérios (Farah, 2007).

1.2.1. Seqüências repetidas em tandem

1.2.1.1. DNAs satélites

Seqüências satélites são altamente repetidas, variando de 100 a 300 pb (pares de bases) de comprimento e de 1.000 a mais de 100.000 cópias no genoma. Em geral, localizam-se nas regiões terminais e centroméricas de um ou mais locos cromossômicos (Martins, 2006). Por possuírem densidade própria podem ser purificadas por centrifugação em gradiente de densidade de cloreto de Césio, constituindo frações "satélites" em relação ao restante do DNA genômico (Farah, 2007). Adicionalmente, vários trabalhos mostram que a distribuição dos DNAs satélites coincide com o padrão de bandamento C dos cromossomos (heterocromatina constitutiva), sugerindo que sejam um importante componente desta (Miklos, 1985).

O número de cópias de DNAs satélites é bastante variável. Existem cerca de 10.000 cópias do DNA satélite STR120 no genoma da soja *Glycine max* (Morgante *et al.*, 1997), 82.800 cópias do elemento PGH290 no genoma de *Drosophila guanche* (Bachmann *et al.*, 1989), 450.000 cópias do elemento PIM357 em espécies de besouro do gênero

Pimelia (Pons *et al.*,1997) e 6.000.000 de cópias do DNA satélite RPCS no genoma do roedor *Ctenomys haigi* (Slamovits *et al.*, 2001). Em mamíferos, as seqüências satélites podem constituir de 5% a 30% do genoma, sendo notável que a proporção de seqüências satélites no genoma de uma espécie é bastante variável (Walsh, 2001).

Estudos comparativos de DNAs satélites mostraram que, em alguns casos, apesar de rápida divergência nucleotídica, algumas regiões contendo poucos nucleotídeos permaneceram conservadas entre DNAs satélites de espécies filogeneticamente distantes (Madsen et al., 1994). O exemplo mais interessante é o das seqüências pertencentes à família alfa satélite, presente em todas as espécies de primatas investigadas (Haaf et al., 1995). Trata-se de um DNA satélite com unidades de repetição de aproximadamente 170 pb que está presente no centrômero de todos os cromossomos da maioria das espécies de primatas, com exceção do Y (Haaf et al., 1995). Em cada unidade de repetição de 170 pb, existe um elemento conservado de 17 pb, denominado de CENP-B box, que é usado como sítio de ligação de uma proteína centromérica específica, a CENP-B. Esta proteína se liga a uma proteína associada aos microtúbulos (MAP), que por sua vez, se liga aos microtúbulos do fuso (Therman e Susman, 1996). Esses fatos indicam que o DNA satélite alfa deve estar envolvido na formação do centrômero, contribuindo para a segregação dos cromossomos na mitose e meiose através de interações com proteínas centroméricas específicas (Willard, 2001). Notavelmente, a mesma seqüência foi encontrada nos DNAs satélites das espécies de roedores Mus musculus (Broccoli et al., 1990) e G. nigeriae (Volobouev et al., 1995). Tal fato evidencia seu papel na formação do centrômero e indica que o elemento CENP-B box deve estar sob seleção. Além disso, sequências similares a estas foram encontradas em galinhas e até no peixe comumente conhecido como zebrafish (Li e Kirby, 2003).

Até o presente, nenhum trabalho demonstrou uma função geral que explique a presença de DNAs satélites no genoma. DNAs satélites não codificam proteínas. Conseqüentemente, DNAs satélites são coletivamente incluídos na porção não-codificante do genoma (Pages e Holmes, 1998). Existem casos em que DNAs satélites são claramente transcritos (Rojas *et al.*, 2000), mas a função destes transcritos, se existe, ainda não foi determinada. Até o presente, nenhum trabalho demonstrou uma função geral que explique a presença de DNAs satélites no genoma. Alguns transcritos de DNAs satélites de organismos tão variados como gafanhotos, salamandras e esquistossomos, possuem

atividade autocatalítica, na forma de riboenzimas capazes de auto-clivagem. No entanto, nenhuma função celular foi descrita para esta riboenzima.

1.2.1.2. Minissatélites

Seqüências repetidas arranjadas em cadeia, conhecidas como minissatélites ou seqüências com número variável de repetições (VNTR, *variable number of tandem repeats*), consistem de seqüências curtas (5 a 65 pb), geralmente envolvendo uma média de tamanho de cadeia de 0,5-30 Kb e são freqüentemente GC ricas presentes nas regiões eucromáticas dos genomas de vertebrados, fungos e plantas (Charlesworth *et al.*, 1994).

Os minissatélites foram descobertos durante a análise de seqüências de DNA do gene humano para insulina (Bell *et al.*, 1982). A localização dos minissatélites no DNA através da técnica de *Southern blot* mostrou que cada indivíduo apresenta um padrão particular com relação à quantidade e comprimento das cadeias de minissatélites o que levou Jeffreys *et al.* (1985) a se referir a essa técnica como impressão digital do DNA (*DNA fingerprint*).

Desde o desenvolvimento da técnica de DNA *fingerprint* (Jeffreys *et al.*, 1985) os pesquisadores têm reconhecido muitas aplicações para essa técnica nas análises de organismos aquáticos. O conhecimento destas regiões genômicas permitiu o desenvolvimento de marcadores que são mais polimórficos do que aqueles revelados pela análise convencional de isozimas ou por seqüências de DNA mitocondrial (Wright, 1993). Entre os peixes, o número de alelos identificados por lócus varia de 2 a 52 (O'Reilly e Wright, 1995). Assim, os minissatélites têm sido empregados em uma grande série de análises em pesquisas básicas e aplicadas como mapeamento genômico, genética de populações e evolutiva, programas de seleção e melhoramento e em estudos de ecologia e preservação de espécies (Harris e Wright, 1995).

1.2.1.3. Microssatélites

Microssatélites, também referidos como seqüências simples repetidas (Tautz, 1989) foram descritos por três grupos de cientistas, como pequenas seqüências contendo de um a seis nucleotídeos que se repetem em *tandem* (Litt *et al.*, 1989, Tautz, 1989, Weber *et*

al., 1989). São classificados como perfeitos, imperfeitos ou compostos (Weber, 1989). Os perfeitos são aqueles em que o motivo se repete sem interrupção de um outro motivo ou seqüência. Os compostos são aqueles nos quais existe a repetição de mais de um tipo de motivo. Os imperfeitos são aqueles que apresentam outras seqüências além daquelas repetidas em *tandem*.

Embora na maioria das vezes sejam descritos como marcadores neutros, funções importantes de vários fenômenos biológicos têm sido atribuídas aos microssatélites. Exemplos dessas funções é a participação na organização da cromatina (Epplen *et al.*, 1996), na replicação do DNA (Li *et al.*, 2002), na recombinação (Biet *et al.*, 1999) e na expressão gênica (Liu *et al.*, 2001), dentre outras.

Os microssatélites são altamente polimórficos, uma vez que apresentam grande diversificação no tipo (mononucleotídeo a hexanucleotídeo) e no número de repetições encontradas nas diferentes espécies. Isto ocorre devido à alta taxa de mutação nessas regiões, variando de 10^{-2} a 10^{-6} eventos por loco por geração (Ellegren, 2000), comparado a regiões codificantes do genoma, que apresentam taxas de mutação de 10^{-9} (Li, 1997).

Microssatélites são encontrados em muitos genomas, particularmente em eucariotos, sendo também relatados em menor quantidade em genomas procariotos. A maioria dos microssatélites (30 a 67%) apresenta a repetição em dinucleotídeos. Em vertebrados, a repetição mais freqüente é o dinucleotídeo AC. No genoma humano, dentre todos os motivos, o AT é o mais freqüente (Chistiakov *et al.*, 2006).

Os microssatélites localizam-se em maior proporção nas regiões nãocodificantes do genoma, mas também ocorrem em regiões codificantes (Toth *et al.*, 2000). Isto pode ser atribuído à seleção negativa sobre mutações em regiões codificantes (Metzgar *et al.*, 2000). Mesmo assim, em humanos, a instabilidade de certas regiões de trinucleotídeos leva ao aparecimento de doenças tais como síndrome do X frágil, doença de Huntington, dentre outras (Brow e Brow, 2004).

A herança dos microssatélites é co-dominante, o que permite a distinção entre homozigotos e heterozigotos. Sua análise é baseada em PCR (*Polymerase Chain Reaction*), que permite a utilização de pouca quantidade de DNA. Além disso, o arranjo das repetições forma unidades curtas que não ultrapassa a capacidade de extensão da PCR, possibilitando sua amplificação de DNAs degradados e de qualidade ruim. Todas essas características fazem dos microssatélites ideais para estudos de mapeamento genômico, genética de populações, teste de paternidade, epidemiologia molecular, patologia e conservação de espécies (Chistiakov *et al.*, 2006).

1.2.2. Seqüências repetidas dispersas

Os elementos transponíveis (TEs) foram descobertos em 1950 por Bárbara McClintock, enquanto estudava grãos coloridos do milho indiano. Essa descoberta e a caracterização das propriedades genéticas desses elementos renderam-lhe o prêmio Nobel em 1983, somente após terem sido relatados no genoma de *D. melanogaster, E. coli, C. elegans* e também de humanos (Berg e Howe, 1989). Desde sua descoberta, os TEs têm-se mostrado presentes na maioria dos organismos, compondo grande parte das seqüências moderadamente repetidas de bactérias, fungos, plantas e animais. Podem apresentar desde poucas até centenas de cópias no genoma de *Zea mays* (milho), 77% de *Rana esculenta* (rã) e 40% de *Mus musculus* (camundongo). Entretanto, organismos unicelulares apresentam menor quantidade de TEs, sendo que em *Saccharomyces cerevisae* apenas 3% a 5% do genoma é representado por esses elementos e em bactérias a proporção é ainda menor, ficando em cerca de 0,3% em *E. coli* (Biémont e Vieira, 2006).

A classificação desses elementos é feita de acordo com o tipo intermediário de transposição, sendo definidos como pertencentes à classe I aqueles que possuem intermediários de RNA e como pertencentes à classe II aqueles cujos intermediários são moléculas de DNA (Kidwell, 2002).

1.2.2.1. Elementos da classe I

Os elementos desta classe são conhecidos por retrotransposons. Eles movimentam-se através de um intermediário de RNA que é codificado para DNA pela enzima transcriptase reversa, produzida por eles mesmos, antes da sua nova inserção. Por sua vez, essa classe é subdividida em duas subclasses: os retrotransposons com LTR (longas repetições terminais) e os sem LTR (Capy *et al.*, 1998).

• Retrotransposons com LTR

São elementos estruturalmente similares aos retrovírus. Possuem longas repetições nucleotídicas nas extremidades 5'e 3'. De uma maneira geral, estas repetições terminais flanqueiam uma região central que contém três módulos abertos de leitura conhecidos por ORFs (*Open Reading Frame*). A seqüência das ORFs pode variar entre os elementos deste grupo. A primeira ORF refere-se ao gene *gag* que produz uma poliproteína que é processada em três proteínas maduras: a matriz, o capsídeo e o nucleocapsídeo. Essas três proteínas possuem similaridade aos componentes do capsídeo dos retrovírus. A outra ORF constitui-se do gene *pol* que codifica as enzimas necessárias à transposição do elemento: protease (Pr), transcriptase reversa (TR), RNAseH e integrase (Int). A última ORF está presente em algumas famílias desta classe, podendo ou não produzir uma proteína funcional, ela corresponde ao gene *env*, que codifica a proteína do envelope viral nos retrovírus (Capy *et al.*, 1998) (Figura 2).

De acordo com a seqüência codificante dentro da segunda ORF, esta subclasse de retroelementos pode ser dividida em duas subfamílias: *Ty1-copia* com a seqüência 5' Pr-Int-TR-RNAseH 3', e *Ty3-gypsy* com a seqüência 5'Pr-TR-RNAseH-Int 3'(Figura 2) (Capy *et al.*, 1998).

Os retrotransposons com LTR são encontrados em organismos eucariotos. Constituem aproximadamente 2% do genoma de *Drosophila* e mais que 40% do genoma de certas plantas.

Figura 2: Representação de diferentes grupos de retrotransposons LTR e Não-LTR. LTR, repetição longa terminal; PR, protease; INT, integrase; RT, transcriptase reversa; RNAse H, ribonuclease H; LINE, elemento nucleotídeo interpassado longo; SINE, elemento nucleotídeo interpassado curto. Modificado de Kumar e Bennetzen (1999).

• Retrotransposons sem LTR

Também chamados de retroposons, esta subclasse é dividida em duas superfamílias. A primeira inclui os elementos que não codificam as proteínas necessárias para a transcrição reversa e tem como principal componente os elementos curtos dispersos chamados de SINEs (*Short Interspersed Nucleotide Elements*). Na segunda estão os LINEs (*Long Interspersed Nucleotide Elements*), elementos que codificam as proteínas necessárias para a transcrição reversa. Tanto os elementos LINEs, quanto os SINEs têm sido encontrados em plantas, fungos e animais. Eles são encontrados em grande número de cópias nos genomas dos eucariotos.

Em geral, os SINEs possuem tamanho entre 100 a 500 pb (Fawcett *et al.*, 2006). Em vertebrados compõe duas superfamílias CORE-SINE e V SINE (Kazazian *et al.*, 2004). Em plantas sua distribuição é mais limitada, sendo encontradas famílias de SINEs do tipo AU (Fawcett *et al.*, 2006).

As seqüências repetidas do tipo SINE movimentam-se por retrotransposição com o auxílio de outros elementos móveis ativos, já que não codificam as enzimas necessárias para a sua própria mobilização, e são transcritos através de um promotor interno para RNA polimerase III (Fawcett *et al.*, 2006)..

Dentre os SINEs as seqüências do tipo *Alu* são as mais presentes no genoma primata. Estes elementos representam 5% a 10% do genoma deste grupo. Tem sido estimado que haja em torno de 1.000.000 cópias da família *Alu* no genoma humano (Biémont e Vieira, 2006). A família *Alu* é composta de seqüências curtas relacionadas de cerca de 300 pb em comprimento. As seqüências *Alu* se assemelham muito com aquelas do RNA 7S presentes nas partículas de reconhecimento de sinal que direcionam a maquinaria ribossomal da transcrição para a membrana do retículo. Acredita-se que durante a evolução este RNA citoplasmático foi copiado pela transcriptase reversa e integrado no genoma. No genoma de outros mamíferos também existe uma quantidade grande de SINEs. Por exemplo, no genoma da foca-do-porto há aproximadamente 1-3 x 10⁵ copias de seqüências do tipo SINE o que constitui cerca de 8,7% de genoma (Coltman e Wright, 1994).

O termo LINE foi inicialmente criado para descrever as seqüências de DNA repetidas longas dispersas no genoma dos mamíferos. Inicialmente, estes elementos foram classificados no grupo dos retroelementos de origem não viral, devido à presença de seqüências poliadeniladas terminais e ausência de LTRs. A estrutura dos LINEs compreende duas fases abertas de leitura. A primeira codifica uma proteína semelhante à *gag* com sítio de ligação com RNA e propriedade chaperônica para ácidos nucléicos e a segunda fase aberta de leitura, uma proteína do tipo polimerase com atividade endonuclease e transcriptase reversa (Martin *et al.*, 2005).

LINEs são encontrados em uma variedade de organismos incluindo protistas, plantas, insetos, moluscos e vertebrados. Em mamíferos o elemento LINE-1 é o mais freqüente. Aproximadamente 17% do genoma humano é composto por este tipo de repetição, o que corresponde a 100.000 cópias, variando entre 50.000 – 100.000 cópias nos demais genomas (Han *et al.*, 2007).

A principal característica dos retrotransposons é a sua capacidade de se mover dentro do genoma, inserindo-se em novos sítios, próximos, ou até mesmo dentro de seqüências gênicas, podendo causar mutações de inserção, alteração da estrutura e função de genes, rearranjos cromossômicos, mudanças na regulação gênica e aumento exagerado do tamanho do genoma, podendo dessa forma servir como fonte de diversidade (Feschotte e Prithman, 2007).

As mutações provocadas por estes elementos são fontes de variabilidade genética e com isso afetam as seqüências genômicas provocando efeitos negativos ou benéficos no genoma de seus hospedeiros (Volff, 2006). Como exemplos prejudiciais no genoma têm-se várias doenças genéticas, sendo que destas, 0,5% a 1% representam doenças humanas como hemofilia, distrofia muscular de Duchenne, tumores de esôfago e câncer de mama (Biémont e Vieira, 2006). Apesar de poder provocar danos ao genoma, esses elementos podem ser "domesticados" pelo hospedeiro, auxiliando o genoma em certas funções básicas como o fazem os elementos TART e Het-A em *Drosophilas*. Esses dois elementos realizam, atualmente, uma função celular básica semelhante a da enzima telomerase. Het-A e TART têm inserção preferencial nas regiões teloméricas dos cromossomos e, desta forma, eles mantêm constante o tamanho do cromossomo que durante o ciclo celular perde parte dessas regiões. Este é o melhor exemplo onde um elemento de transposição realiza uma função vital para o genoma hospedeiro (Kidwell e Lisch, 1997). Além disso, em mamíferos, estes elementos agem como moduladores na expressão de genes e contribuem para a inativação do cromossomo X (Volff, 2006).

Todo o aparato utilizado pelos elementos transponíveis é sintetizado na maioria das vezes pelo próprio elemento (elementos autônomos), mas em alguns casos ele pode utilizar as enzimas sintetizadas por outros elementos para realizar a sua movimentação (elementos não-autônomos). Os elementos transponíveis autônomos são capazes de realizarem sua transposição, ao contrário dos elementos não-autônomos, não pode transpor a si mesmo, mas sim na presença de um elemento autônomo da mesma família (Wessler, 2006).

Existem vários tipos de elementos de transposição. Temos como exemplos, os elementos *Ty* (em levedura), os elementos *copia*, *fold-back* e os elementos *P* encontrados em *Drosophila*, *Ac*, *Ds e Mu* caracterizados em milho, e os elementos retrovirais (Lewin, 2004).

Segundo alguns autores os elementos transponíveis são um exemplo de genes "egoístas". Essas seqüências podem não apresentar nenhuma vantagem seletiva para os genomas hospedeiros, mas podem sobreviver através da produção acurada de cópias. Quando a fonte original torna-se inativa do ponto de vista de transposição, um ou mais elementos de sua progênie podem continuar existindo ativamente no genoma (Smit, 1996).

1.2.2.2. Elementos da classe II

A classe II é constituída pelos elementos chamados de transposons. Os elementos dessa categoria são caracterizados pela presença de terminações repetidas invertidas e genes codificando para a enzima transposase (Charlesworth, 1994). Atualmente são reconhecidas dez famílias para tais elementos: *Tc1/mariner, haT,* elemento *P, MuDR/Fokdback, Cacta, PiggyBac, Pif/Harbinger, Merlin, Transib e Banshee* (Feschotte e Prithman, 2007).

O elemento repetido Tc1 pertence a uma superfamília de transposons amplamente distribuído de protozoários a vertebrados, inclusive em muitas espécies de peixes teleósteos (Capriglione *et al.*, 2002). Esse elemento possui um gene para a enzima transposase que catalisa seu movimento e repetições terminais invertidas constituindo-se característica da maioria dos transposons (Miskey *et al.*, 2005). Apesar de extremamente difundido pelos organismos, a grande maioria deste elemento (Tc1) é inativa no genoma dos eucariotos (Miskey *et al.*, 2005) devido a vários eventos de mutações, deleções e inserções que causaram a sua inativação, tornando-o um componente permanente no genoma dos eucariotos (Pocwierz-Kotus, 2007).

Os transposons podem ser transpostos através de dois mecanismos de mobilização diferentes. No primeiro, (i) chamado de transposição replicativa, o elemento é copiado como parte de seu movimento, permanecendo uma cópia no sítio original, enquanto a outra é inserida em um novo sítio, contribuindo para um aumento do número de cópias do transposon. No segundo mecanismo (ii), que é conhecido como transposição não-

replicativa, o elemento sai do local antigo e se insere em um novo local sem nenhum aumento do número de cópias (Lewin, 2004).

Assim como outros elementos, a mobilidade dos transposons pode afetar a trajetória evolucionária de seus hospedeiros via alteração da função gênica através de inserção e indução de rearranjos cromossômicos. Assim, os transposons contribuem para originar diversidade alélica e para a criação de novos genes (Feschotte e Prithman, 2007).

Os transposons possuem a capacidade de causar mutações. Ao se transpor, podem afetar a expressão de genes. Quando a inserção desses elementos ocorre dentro de regiões promotoras, introns, regiões não traduzidas, podem contribuir para alterações na estrutura do gene, levando, dessa forma, a uma perda da função deste no organismo. Embora a maioria dessas mutações sejam prejudiciais, a transposição destes elementos tem levado a geração de novos alelos, a qual tem contribuído para uma ampla diversificação de espécies (Kapitonov e Jurka, 2006).

Até recentemente os transposons eram vistos como "DNA lixo" sem qualquer função importante. Porém, hoje sabe-se que geram mutações, modificam os padrões de expressão gênica, promovem rearranjos cromossômicos, desempenhando assim, um papel fundamental na trajetória evolucionária de seus hospedeiros (Feschotte e Prithman, 2007). **1.3.** Elementos repetidos de DNA e seu papel como marcadores físicos cromossômicos para os peixes

1.3.1. Genes ribossomais

Os estudos cromossômicos desenvolvidos em peixes têm contribuído grandemente para o conhecimento do genoma dessa classe de vertebrados. A maioria das informações disponíveis concentra-se em análises citogenéticas básicas, sendo que um número pouco expressivo de trabalhos tem descrito seqüências de DNA e sua organização no genoma (Martins, 2006). Seqüências repetidas como SINEs, LINEs, DNAs satélites, minissatélites, microssatélites e genes repetidos em *tandem*, como os gene de RNAs ribossomais, têm sido descritas para diversas espécies de peixes. Essas seqüências podem ser utilizadas como marcadores cromossômicos úteis em estudos de evolução, bem como na organização do genoma como um todo (Martins, 2006).

Os primeiros trabalhos de mapeamento físico através das hibridações *in situ* utilizaram como sondas seqüências de DNA repetidas em *tandem*. Entre elas estão os genes que codificam os RNAs ribossomais 28S, 18S, 5,8S e 5S (Martins, 2006).

O RNAr é um das moléculas de RNA mais abundante nas células, constituindo aproximadamente 80% de todo o RNA. Possuem função catalítica e estrutural e formam a estrutura básica das subunidades ribossomais maiores e menores que catalizam a síntese de proteínas. Nos eucariotos superiores, os genes das subunidades ribossomais, apresentam-se organizados em duas famílias multigênicas (5S e 45S) as quais assumem uma distribuição em *tandem* no genoma. Os genes de RNAr tem sido amplamente estudados em uma variedade de plantas e animais, especialmente com relação a caracterização de espécies e populações, relações evolutivas e expressão gênica (Martins e Wasko, 2004). Em peixes, a localização cromossômica dos genes de RNAr 5S tem sido de grande importância para a compreensão da estrutura e organização das seqüências repetidas nos cromossomos (Martins e Galetti, 2001b).

A localização cromossômica dos genes RNAr 5S já foi descrita para mais de 67 espécies de peixes de diferentes ordens tais como Acipenceriformes, Anguiliformes, Cypriniformes, Characiformes, Salmoniformes, Perciformes e Tetraodontiformes (Martins e Wasko, 2004).

Tabela 1- Compilação de dados relacionados à localização cromossômica de DNAr 5S noscromossomos dos peixes

Ordens e espécies	Número de locos de DNAr 5S	Localização cromossomica	Sintenia dos locos DNAr 5S e 45S	Referências
Acipenseriformes				
Acipenser naccarii	4	Intersticial/ Telomérica	0	Fontana et al., 1999, 2003
Acipenser ruthenus	2	Telomérica	0	Fontana 1999
Acipenser fulvescens	4	Intersticial	0	
Acinenser sturio	2	Intersticial	0	Tagliavini et al. 1999: Fontana et al. 2003
Acinenser stellatus	2	Intel stretar	Positivo	Fontana et al. 2003
Acipenser baerii	2 4		Positivo	Fontana et al. 2003
Acipenser transmontanus	4		Positivo	Fontana et al. 2003
Assingerser qualdanstaadtii	2	Intersticial	10311110	Fontana $et al. 2003$
Acinenser ruthenus	$\frac{2}{2}$	filler sticial		Fontana et al. 2003
Acipenser ovvrinchus	2	Região mediana		Fontana et al. 2005
Huso huso	2	Regiao mediana	Positivo	Fontana <i>et al.</i> 1998, 2003
Anguilliformes				
Anguilla Anguilla	2	Intersticial	Negativo	Martinez et al., 1996
Anguilla rostrata	2	Intersticial	Negativo	Nieddu et al., 1998
Conger conger	2		U	Deiana et al., 2006
Salmoniformes				
Coregonus artedti	2	Intersticial	Negativo	Sajdak et al., 1998
Coregonus zenithicus		Intersticial	Negativo	Sajdak et al., 1998
Coregonus lavaretus	2	Intersticial	Negative	Jankun et al.,2003
Coregonus lavaretus	6	Região distal		Rossi e Gornung, 2005.
Coregonus peled	2	Intersticial	Negativo	Jankun <i>et al.</i> , 2003
Coregonus albula	2	Intersticial	Negativo	Jankun <i>et al.</i> , 2003
Hucho perryi	2	Intersticial	Negativo	Fujiwara et al., 1998
Oncorhynchus masou	8	Intersticial	Positivo	Fujiwara <i>et al.</i> , 1998
Oncorhynchus mykis	4-6	Intersticial	Positivo	Móran <i>et al.</i> , 1996
Oncorhynchus tshawytscha	7	Porção proximal do braço curto		Stein <i>et al.</i> , 2001.
Oncorhynchus keta	Múltiplos pares inclusive o sexual			Phillips et al., 2007.
Oncorhynchus gorbuscha	2			Phillips et al., 2007.
Salmo salar	3-4	Intersticial	Positivo	Pendas <i>et al.</i> 1994
Salmo trutta	2	Intersticial	Negativo	Móran <i>et al.</i> , 1996
Salvelinus fontinalis	2	Intersticial	Negativo	Fujiwara <i>et al.</i> , 1998
Salvelinus malma			8	Phillips <i>et al.</i> , 2002
Salvelinus confluentes				Phillips et al., 2002
Salvelinus alpinus				Phillips et al., 2002
Salvelinus namavcush				Phillips et al., 2002
Hucho perryi	8	Intersticial		Fujiwara et al., 1998
Thymallus thymallus	6-7	Intersticial	Negativo	Jankun <i>et al.</i> , 2003
Cypriniformes			8	···· ·
Acheilognathus tabira	4	Intersticial Telomérica	Positivo	Inafuku <i>et al.</i> , 2000
Carassius auratus langsdorfi	2	reiointerieu		Murakami e Fugitani 1998
Cyprinus carpio	<u>-</u> 4	Intersticial	Negativo	Inafuku <i>et al.</i> 2000
Danio rerio	2	Intersticial	Positivo	Phillips e Reed 2000
Rhodeos ocellatus	2	Intersticial	Negativo	Kikuma <i>et al.</i> , 2000
Characiformes				
Astyanax altiparanae	2	Intersticial	Positivo	Almeida-Toledo et al., 2002
Astyanax lacustris	2	Intersticial	Positivo	Almeida-Toledo et al., 2002
Astyanax fasciatus	4	Intersticial	positivo/ negativo	Almeida-Toledo et al., 2002
Astyanax schubarti	4	Intersticial	positivo/ negativo	Almeida-Toledo et al., 2002
Astyanax scabripinnis	4	Intersticial	positivo/	Almeida-Toledo et al., 2002
-------------------------	---	--------------	-----------	------------------------------
Astvanax scabripinnis	8	Intersticial	Negativo	Ferro et al., 2001
Brycon lundii	4	Intersticial	Negativo	Wasko <i>et al.</i> , 2001
Brycon microlepis	4	Intersticial	Negativo	Wasko et al., 2001
Brycon orbignyanus	4	Intersticial	Negativo	Wasko <i>et al.</i> , 2001
Brycon cephalus	4	Intersticial	Negativo	Wasko <i>et al.</i> , 2001
Brycon sp.	4	Intersticial	Negativo	Wasko et al., 2001
Brycon brevicauda	4	Intersticial	Negativo	Wasko et al., 2001
Brycon insignis	4	Intersticial	Negativo	Wasko et al., 2001
Hoplias malabaricus	2		Negativo	Born and Bertollo 2000
Leporinus cf. elongatus	4	Intersticial	Negativo	Martins e Galetti 2001ª
Leporinus elongatus	4	Intersticial	Negativo	Martins e Galetti 1999
Leporinus friderici	4	Intersticial	Negativo	Martins e Galetti 1999
Leporinus obtusidens	4	Intersticial	Negativo	Martins e Galetti 1999
Leporinus reinhardti	4	Intersticial	Negativo	Martins e Galetti 2001ª
Parodon hilarii	4	Intersticial	Negativo	Vicente et al., 2001
Parodon tortuosus	4	Intersticial	Negativo	Vicente et al., 2001
Parodon sp.	4	Intersticial	Negativo	Vicente et al., 2001
Schizodon altoparanae	4	Intersticial	Negativo	Martins e Galetti 2000
Schizodon borelli	4	Intersticial	Negativo	Martins e Galetti 2000
Schizodon isognathum	4	Intersticial	Negativo	Martins e Galetti 2000
Schizodon knerii	4	Intersticial	Negativo	Martins e Galetti 2000
Schizodon nasutus	4	Intersticial	Negativo	Martins e Galetti 2000
Schizodon vittatus	4	Intersticial	Negativo	Martins e Galetti 2000
Perciformes				
Coris julis	4	Telomérica	Positivo	Mandrioli et al., 2000
Chromis insolata	4	Telomérica	Negativo	Molina e Galetti 2002
Chromis multilineata				Molina e Galetti 2002
Chromis flavicauda	4	Intersticial	Negativo	Molina e Galetti 2002
Ephinephelus marginatus	2	Intersticial	Negativo	Sola et al., 2000
Gobius níger	2	Intersticial	Negativo	Mandrioli et al., 2001
Micropterus salmoides	2	Intersticial	Negativo	Deiana et al., 2000
Oreochromis niloticus	6	Intersticial	Negativo	Martins et al., 2002
Tetraodontiformes				
Tetraodon fluviatilis	2	Telomérica	Negativo	Mandrioli and Manicardi 2001
Tetraodon nigroviridis	2	Intersticial	Negativo	Fischer et al., 2000

*Modificado de Martins e Wasko, 2004

Como exemplo de mapeamento físico de DNAr, tem-se o trabalho realizado por Noleto *et al.* (2007) com Tetraodontiformes onde mapeou-se as seqüências 18S e 5S, obtidas de *Prochilodus argenteus* e *Leporinus obtusidens* respectivamente, nas espécies *Sphoeroides testudineus, Sphoeroides greeleyi* e *Cyclichthys spinosus.* A utilização da sonda 18S revelou marcações simples nas três espécies. Já a sonda 5S revelou marcações simples nas espécies *S. greeleyi* e *S. testudineus* e marcações múltiplas na espécie *C. spinosus.* Os resultados obtidos com a utilização da sonda 5S sugerem que os sítios múltiplos observados em *C. spinosus* podem representar uma característica plesiomórfica (Noleto *et al.*, 2007), sendo assim um importante elemento para estudos filogenéticos neste grupo de espécies.

1.3.2. Elementos repetidos em tandem

Em peixes, entretanto, o número de informações a respeito da organização molecular dos DNAs satélites e de sua localização cromossômica vem crescendo nos últimos tempos. Essas informações podem ser mais bem compreendidas na tabela abaixo:

Tabela 2- Compilação de dados relacionados ao isolamento e localização cromossômica deDNAs satélites nos cromossomos dos peixes

Famílias e espécies	Tamanho (pb)	Localização cromossômica	Referências
Acipenseridae			
Acipenser naccarii	180	Centromérica	Garrido-Ramos et al., 1997 Lanfredi et al., 2001
Acipenser gueldenstaedtti	180	Centromérica	Lanfredi et al., 2001
Acipenser baerii	180	Centromérica	Lanfredi et al., 2001
Acipenser transmontanus	180	Centromérica	Lanfredi et al., 2001
Acipenser ruthenus	180	Centromérica	Lanfredi et al., 2001
Huso huso	180	Centromérica	Lanfredi et al., 2001
Adrianichthydae			
Oryzias latipes	600	Sexo-específico	Matsuda <i>et al.</i> , 1998
Anostomidae	151500	a a w	
Leporinus elongatus	174,729	Cromossomos Z e W	Nakayama <i>et al.</i> , 1994
Leporinus obtusidens	483	Pericentromérica	Koehler et al., 1997
Channichthydae	1000		
Chionodraco hamatus	1000	Centromerica e telomerica	Capriglione <i>et al.</i> , 1994
Characidae			M (1 2000
Astyanax scabripinnis	51	Heterocromatinas	Mastriner <i>et al.</i> , 2000 Mantovani <i>et al.</i> , 2004
Cichlidae			
Oreochromis niloticus	237	Centromérica	Franck <i>et al</i> , 1992
	201	Controllorio	Oliveira e Wright, 1998
Oreochromis niloticus	1900	braço curto de quatro cromossomos	Franck e Wright, 1993; Oliveira e Wright, 1998
Cyprinidae			
Carassius auratus langsdorfi	137		Murakami e Fujitani, 1997
Danio rerio	180, 191	Centromérica	Ekker <i>et al.</i> , 1992; He <i>et al.</i> , 1992; Sola e Gornung, 2001
Danio rerio	200	Heterocromatina rica AT	Phillips e Reed, 2000
Danio rerio	92	Heterocromatina rica GC	Phillips e Reed, 2000
Erytrinidae			
Hoplias malabaricus	333-366	Centromérica	Haaf et al., 1993
Hoplias malabaricus	356-360	Centromérica	Martins et al., 2006
Gobiidae			
Gobius cobitis	332	Centromérica	Canapa et al., 2002
Gobius paganelus	332	Centromérica	Canapa <i>et al.</i> , 2002
Heptapteridae			
Imparfinis schubarti	2	Telomérica	Vanzela et al., 2002
Loricariidae			
Rineloricaria latirostris	2	Próximo NOR	Vanzela et al., 2002
Parodontidae			
Parodon hilarri	200	Heterocromatina terminal, cromossomo W	Vicente et al., 2003
Pimelodidae			
Steindachneridion scripta	2	Telomérica, dispersa	Vanzela et al., 2002
Poecilidae			
Poecilia reticulata	4	Cromossomo Y	Nanda et al., 1990
Prochilodontidae			
Prochilodus lineatus	441	Pericentromérica	Jesus et al., 2003
Prochilodus lineatus	900	pericentromérica e supranumerários	Jesus et al., 2003
Prochilodus lineatus	5	Telomérica	Hatanaka et al., 2002
Prochilodus marggrawii	5	Telomérica	Hatanaka et al., 2002
Salmonidae			

	72 127 200			
Salvelinus alpinus	72, 127, 200,	Centromérica		Hartley e Davidson, 1994
Salvelinus namaycush	140	Centromérica		Reed e Phillips, 1995
Salvelinus namavcush	120	Centromérica		Reed e Phillips, 1995
Salmo truta	359	NOR		Abuín <i>et al.</i> , 1996
	380, 442,			
Salmo salar	923	NOR		Goodier e Davidson, 1994; Abuín <i>et al.</i> , 1996
Salmo salar	260	Pericentromérica		
Salmo salar	42	Intersticial		Pérez et al., 1999
Salmo salar	20	Telomérica, pericer	tromérica,	\mathbf{P} ároz at al 1000
Saimo saiar	20	centromérica		reiez ei al., 1999
Salmo salar	34	Intersticial		Pérez et al., 1999
Oncorhynchus tshawyscha	939	Subtelomérica		Delvin et al., 1991, 1998
Sparidae				
Sparus aurata	186	Centromérica		Garrido-Ramos et al., 1994
Pagrus pagrus	186	Subtelomérica		Garrido-Ramos et al., 1998
Pagrus aurica	186	Subtelomérica		Garrido-Ramos et al., 1998
Pagellus erythrinus	186	subtelomérica e telomérica		Garrido-Ramos et al., 1998
Tetradontidae				
Tetraodon nigroviridis	118	Pericentromérica		Crollius et al., 2000
Tetraodon nigroviridis	10	Heterocromatinas		Crollius et al., 2000
Tetraodon nigroviridis	100	Heterocromatinas		Fisher et al., 2004
Tetraodon nigroviridis	104	Heterocromatinas		Fisher et al., 2004
Fugu rubripes	118	Centromérica		Brenner et al., 1993; Elgar et al., 1999
Cyclostomata				
Epatretus okinoseanus	90	Intersticial		Kubota et al., 1993
Epatretus burgeri	57 e 64	Intersticial		Kubota et al., 2001
Petromyzon marinus		Centromérica e pericentrom	érica	Böan et al., 1996

* Modificado de Martins, 2006

Martins *et al.* (2006) mapearam uma seqüência satélite centromérica nomeada 5S*Hind*III-DNA, a qual tem uma similaridade com o gene RNAr 5S e seus espaçadores no genoma de *Hoplias malabaricus*. Os experimentos de FISH demonstraram que repetições do gene RNAr 5S verdadeiro foram hibridados na posição intersticial de dois pares cromossômicos, enquanto que a seqüência 5S*Hind*III-DNA mostrou marcações na posição centromérica de nove pares cromossômicos. A presença da seqüência 5S*Hind*III-DNA nos centrômeros de vários cromossomos indica que esta família satélite provavelmente escapou da pressão seletiva que mantém a estrutura e organização do gene RNAr 5S e se tornou dispersa no genoma. Os autores sugeriram a hipótese de que esta seqüência tem sido mantida nas regiões centroméricas e que podem desempenhar um papel estrutural ou funcional na organização do centrômero.

Azevedo *et al.* (2005) isolaram, caracterizaram e mapearam a seqüência *Al-Hind*III na espécie *Achirus lineatus* (Pleuronectiformes), a qual é constituída por 204 pb, com predominância de pares de base AT (63,72%). Experimentos de hibridação em membrana demonstraram que este fragmento estava ausente nas espécies *A. declives*, *Gymnachirus nudus* e *Trinectes paulistanus*, indicando ser este um marcador molecular específico para *A. lineatus*. A hibridação *in situ* fluorescente demonstrou que esta família

de DNA satélite localiza-se na região centromérica de todos os cromossomos, sugerindo que a mesma possa estar associada a uma função específica nesta posição ou, alternativamente, podem apenas estar associadas a alguma seqüência centromérica e estarem evoluindo juntas.

As informações referentes às seqüências satélites mostram que as mesmas se encontram localizadas principalmente nas regiões centroméricas dos cromossomos e, como demonstrado para outros organismos, devem desempenhar papel importante na estrutura e função dos centrômeros dos peixes (Galetti e Martins, 2004).

1.3.3. Elementos repetidos dispersos

Apesar da maior parte do DNA repetido do genoma eucariótico ser composta de elementos transponíveis, os estudos de citogenética em peixes utilizando essas seqüências encontram-se ainda em fase inicial. Os resultados já obtidos sugerem que esses elementos podem contribuir bastante para o conhecimento da evolução do genoma nesse grupo de organismos. Alguns desses elementos já foram mapeados nos cromossomos de peixes (Tabela 3).

 Tabela 3- Compilação de dados relacionados ao isolamento e localização cromossômica de

 elementos repetidos dispersos nos cromossomos dos peixes

Ordens e espécies	Tipo de Elementos	Localização cromossômica	Referências
Aulopiformes			
Aulopus japonicus		Cromossomo W	Ota et al., 2003
Cypriniformes			
Alburnus alburnus	Gypse, Ty3	Cromossomo B	Ziegler et al., 2003
Cyprinodontiformes			
Xiphophorus maculatus	XIR LTR-like	Cromossomo Y	Nanda et al., 2000
Perciformes			
Artedidraco shackletoni	Rex1, Rex3	Disperso	Ozouf-Costaz, et al., 2004
Bovichtus angustifrons	Rex1, Rex3	Disperso	
Chionodraco hamatus	Tc1-like	Pericentromérica, telomérica, intersticial	Capriglione et al., 2002
Chionodraco hamatus	Rex1, Rex3	Disperso	Ozouf-Costaz et al., 2004
Dissostichus mawsoni	Rex1, Rex3	Disperso	Ozouf-Costaz et al., 2004
Gobius niger	Mariner-like	overlapping NORs	Mandrioli et al., 2001
Gymnodraco acuticeps	Rex1, Rex3	Disperso	Ozouf-Costaz et al., 2004
Gymnodraco victori	Rex1, Rex3	Disperso	Ozouf-Costaz et al., 2004
Neopagetopsis ionah	Rex1, Rex3	Disperso	Ozouf-Costaz et al., 2004
Notothenia coriiceps	Rex1, Rex3	Disperso	Ozouf-Costaz et al., 2004
Oreochromis niloticus	CiLINE2	Cromossomo 1 e disperso	Oliveira et al., 1999
Oreochromis niloticus	Ron1	Cromossomo 1 e disperso	Bryden et al., 1998; Oliveira et al., 2003
Oreochromis niloticus	Ron2	Disperso	Oliveira et al., 2003
Oreochromis niloticus	On2318	Cromossomo 1 e disperso	Harvey et al., 2003
Oreochromis niloticus	On239 Tc1-like	Centomérico, telomérico, disperso	Harvey et al., 2003
Patagonotothen tesselata	Rex1, Rex3	Disperso	Ozouf-Costaz et al., 2004
Trematomus hansoni	Rex1, Rex3	Disperso	Ozouf-Costaz et al., 2004

Trematomus newnesi	Rex1, Rex3	Disperso	Ozouf-Costaz et al., 2004
Trematomus bernacchii	Rex1, Rex3	Disperso	Ozouf-Costaz et al., 2004
Trematomus pennellii	Rex1, Rex3	Disperso	Ozouf-Costaz et al., 2004
Tetraodontiformes			
Tetraodon fluviatilis	Mariner-like	NOR-associada heterocromatina	Mandrioli e Manicardi, 2001
Tetraodon nigroviridis	Dm-Line	Heterocromatinas	DaSilva et al., 2002
Tetraodon nigroviridis	Tc1-like	Heterocromatinas	DaSilva et al., 2002
Tetraodon nigroviridis	Zebulon	Heterocromatinas	Bouneau et al., 2003
Tetraodon nigroviridis	Tol2	Heterocromatinas	Fischer et al., 2004
Tetraodon nigroviridis	Buffy1	Cromossomos 4-5	Fischer et al., 2004
Tetraodon nigroviridis	Rex3	Heterocromatinas	Fischer et al., 2004
Tetraodon nigroviridis	Babar	Heterocromatinas	Fischer et al., 2004

*Modificado de Martins 2006

Estudos de hibridação *in situ* fluorescente com sondas de retrotransposons *Rex1* e *Rex3* foram realizados por Ozouf-Costaz *et al.* (2004) em 13 espécies de peixes da Antártica, pertencentes a cinco famílias da subordem Notothenioidei. As análises mostraram que o *Rex1* geralmente é menos abundante do que *Rex3* que, por sua vez, teve uma marcação mais intensa em algumas regiões específicas. Na espécie *Chionodraco hamatus*, o *Rex3* acumulou-se em áreas pericentroméricas do braço curto de alguns pares cromossômicos e em especial no braço longo do cromossomo Y, sugerindo que esta região possa corresponder ao braço curto de um dos autossomos envolvidos na fusão em *tandem* que deu origem a este cromossomo.

Parise-Maltempi *et al.* (2007), isolaram através de digestão enzimática do genoma de *Leporinus elongatus*, um elemento repetido do tipo disperso nomeado Le*Spe*I. O mapeamento físico demonstrou que este elemento está localizado nos cromossomos sexuais da espécie, revelando um sistema múltiplo do tipo $Z_1Z_1Z_2Z_2/Z_1W_1Z_2W_2$ para a mesma. Interessante se faz destacar que a descrição original indicava um mecanismo de cromossomos sexuais simples do tipo ZZ/ZW (Galetti Jr e Foresti, 1986).

A localização cromossômica do elemento transponível *Tc1* foi estudada na espécie Antártica *Chionodraco hamatus* (Notothenoidei). Esse elemento foi identificado em uma região heterocromática do cromossomo sexual Y e sua hibridação na região intersticial (Capriglione *et al.*, 2002) sugerindo que este cromossomo possa ter se originado por amplificação em cadeia ou fusão Robertsoniana (Morescalchi *et al.*, 1996).

Ferreira e Martins (2008) isolaram e caracterizaram seqüências repetidas no genoma de *Oreochromis niloticus* através da triagem de biblioteca de BACs (*Bacterial Artificial Chromosomes*) para identificação de clones ricos em seqüências repetidas. Estes foram selecionados e utilizados como sondas para hibridação *in situ* e localizaram-se principalmente nas regiões centroméricas, teloméricas, além de quase toda a extensão do

primeiro par cromossômico, exceto em torno de sua região centromérica. Análises quantitativas da hibridação desses BACs entre machos e fêmeas revelaram diferenças no conteúdo de DNA do braço p entre os cromossomos X e Y, permitindo inferir que tal braço do cromossomo X possui maior quantidade de seqüências repetidas. Tais informações já haviam sido observadas previamente através do seqüenciamento e hibridação cromossômica do DNA microdissectado dos cromossomos X e Y feitos por Harvey *et al.* (2003). Esses resultados reforçam a proposição de que estes tipos de seqüências estejam envolvidos com a diferenciação cromossômica do sexo nesta espécie (Ferreira e Martins, 2008).

A riqueza de seqüências repetidas de DNA nas regiões centroméricas e terminais dos cromossomos das espécies de peixes sugerem que tais seqüências desempenham um papel importante na manutenção e evolução da estrutura cromossômica destas espécies. Seqüências repetidas estão presentes principalmente nas regiões centroméricas e teloméricas dos cromossomos e representam o principal componente das heterocromatinas da maioria das espécies.

1.4. Biologia e evolução dos Cichlidae

O grupo dos peixes é o mais antigo, numeroso e diverso dentre os vertebrados. Acredita-se que as espécies incluídas neste grupo representem a metade das espécies viventes reconhecidas de vertebrados, ou seja, aproximadamente 24.618 espécies válidas para um total de 48.170 (Nelson, 2006). Entretanto, este número pode ser ainda maior, pois a cada ano mais espécies são descritas.

A família Cichlidae, pertence à ordem Perciformes, está incluída entre as famílias de peixes com maior número de espécies (Nelson, 2006), sendo estimadas 3.000 espécies que estão distribuídas pela América Central e do Sul, Madagascar, Sudeste da Índia e África (Kocher, 2004).

A maior diversidade de espécies de Cichlidae é encontrada principalmente nos grandes lagos africanos (Trewavas, 1983). Este grupo de peixes tem atraído uma maior atenção dos pesquisadores, nos últimos anos, devido a sua rápida radiação adaptativa nos grandes lagos do leste da África, onde quase 2.000 espécies têm evoluído somente nos últimos 10 milhões de anos (Kocher, 2004). O principal fator que promove este tipo de adaptação a novos ambientes é o fato de que eles se adaptam facilmente a condições extremas de habitats e nichos (Moyle e Cech Jr., 2000) Além disso, algumas espécies desta família têm uma grande importância para a aqüicultura mundial. Estes peixes apresentam um colorido fascinante que torna as espécies de pequeno porte preferidas pelos aquariofilistas e as de grande porte são muito utilizadas na alimentação e pesca esportiva (Axelrod, 1996).

Segundo Sterba (1973), os ciclídeos são peixes de corpo alto, sendo que alguns apresentam a forma de disco. A grande maioria apresenta cabeça larga, sendo que em muitas espécies, na época reprodutiva, o macho exibe uma protuberância adiposa na testa, às vezes também presente na fêmea. A boca é protráctil e circundada por grossos lábios. Possuem as nadadeiras dorsal e anal com espinhos pungentes, na porção anterior e raios moles na porção posterior. De acordo com Britiski (1972) uma característica marcante dos representantes dessa família é a linha lateral interrompida. Sua porção superior se extende desde o opérculo até o início dos raios moles da dorsal, enquanto a porção inferior segue um pouco abaixo, como se houvesse ocorrido uma quebra. O cuidado parental, assim como a guarda de ovos e larvas são marcantes entre os indivíduos desta família, sendo este papel desempenhado principalmente pelas fêmeas. Os ciclídeos não apresentam um período reprodutivo bem definido e não apresentam dimorfismo sexual marcante, a não ser na época da reprodução, quando algumas características podem diferenciar os sexos (Feldberg, 2003).

Os ciclídeos sul-americanos estão organizados nas seguintes subfamílias: Retroculinae; Cichlinae; Astronotinae; Geophagine e Cichlasomatine. Kullander (1998) propôs uma nova filogenia para a família Cichlidae baseado em 91 caracteres morfológicos de 43 espécies sul-americanas e sete espécies do velho mundo. As subfamílias Etroplinae (Ciclideos de Málaga na Índia) e Pseudocrenilabrinae (Ciclídeos Africanos) são grupos irmãos e formam um grupo irmão de todos os ciclídeos. Outra análise filogenética realizada na família Cichlidae, utilizando DNA mitocondrial, demonstrou que os ciclídeos neotropicais formam um grupo monofilético tendo como grupo basal Retroculus (Retroculinae). Além disso, demonstram portar significantemente níveis maiores de variação genética do que os africanos, apesar do menor número de espécies (Farias *et al.*, 2000). Acredita-se que os ciclídeos sul-americanos representem um grupo monofilético que migrou da África e a partir da América do Sul se espalharam pela América Central e do Norte (Murray, 2001).

Em se tratando do conhecimento do genoma das espécies de ciclídeos, os dados são poucos, e muito aquém do que já se conhece para o "pufferfish" (*Takifugu rubripes*) e o "zebrafish" (*Danio rerio*), os quais possuem a seqüência nucleotídica do seu genoma quase totalmente conhecida (<u>www.ncbi.nlm.nih.gov/genome/zebrafish</u>) (Aparício *et al.*, 2002). A maioria das informações existentes sobre genética da família Cichlidae está relacionada a análises da filogenia das espécies e estudos citogenéticos como a determinação do número diplóide. Este número diplóide está intimamente relacionado à distribuição geográfica das espécies, onde os ciclídeos africanos têm um número diplóide modal igual a 44 cromossomos e os da região Neotropical apresentam na sua maioria, 48 cromossomos (Feldberg *et al.*, 2003).

Apesar de ser a família mais estudada entre os Perciformes, somente, aproximadamente 135 espécies de ciclídeos foram analisadas citogeneticamente e foram encontrados números diplóides variando de 38 a 60 cromossomos. Não ocorre a presença de cromossomos sexuais, mas já foi relatada a existência de cromossomos Bs, ou supranumerários, para algumas espécies como, por exemplo, em *Crenicichla reticulata*, *Cichla monoculus* e *Cichla* sp. (Feldberg *et al.*, 2004).

1.4.1. O gênero Cichla

As espécies do gênero *Cichla* conhecidas popularmente como tucunaré, são piscívoras e têm sido utilizadas para peixamentos em barragens e açudes, por apresentar uma carne de excelente qualidade e também por serem animais de grande interesse econômico, principalmente para a aquariofilia. Foram introduzidas e encontram-se estabelecidas em diversas bacias hidrográficas brasileiras (Nascimento *et al.* 2001). A coloração apresenta-se extremamente variável nas espécies deste gênero, devido aparentemente a alterações ontogenéticas. O colorido brilhante dos indivíduos adultos está presumivelmente durante o período reprodutivo. Esta diversidade de coloração parece

causar grande dificuldade na identificação dos exemplares de *Cichla* (Kullander e Ferreira, 2006).

Este gênero foi primeiramente descrito por Schneider em 1801, baseado na descrição da espécie *Cichla ocellaris* e atualmente são conhecidas quinze espécies (Kullander e Ferreira, 2006) como apresentado na tabela abaixo:

Tabela 4- Espécies do gênero *Cichla* em ordem cronológica de descrição de acordo comKullander e Ferreira (2006)

Espécie	Autor/ano
Cichla ocellaris	Schneider, 1801
Cichla temensis	Humboldt, 1821
Cichla orinocensis	Humboldt, 1821
Cichla monoculus	Agassiz, 1831
Cichla nigromaculata	Jardine, 1843
Cichla intermédia	Machado-Alisson, 1971
Cichla kelberi	Kullander e Ferreira, 2006
Cichla pleiozona	Kullander e Ferreira, 2006
Cichla mirianae	Kullander e Ferreira, 2006
Cichla melaniae	Kullander e Ferreira, 2006
Cichla piquiti	Kullander e Ferreira, 2006
Cichla thyrorus	Kullander e Ferreira, 2006
Cichla jariina	Kullander e Ferreira, 2006
Cichla pinima	Kullander e Ferreira, 2006
Cichla vazzoleri	Kullander e Ferreira, 2006

Representantes do gênero *Cichla* são facilmente distinguidos de todos os outros ciclídeos sul-americanos pela forma da nadadeira dorsal: até o quinto espinho, há um aumento do tamanho destes, depois se observa um gradual decréscimo até o penúltimo espinho, sendo que o último é novamente longo e rigidamente ligado à porção mais mole da nadadeira, a qual é alta como a porção espinhosa anterior. Apresentam boca larga, com mandíbula e maxila proeminentes. Barras verticais escuras estão presentes em todas as

espécies de *Cichla*, constituindo-se de 1 a 4. A mandíbula é prognata e bem exposta. Um proeminente ocelo pode ser visualizado na base da nadadeira caudal (Kullander e Ferreira, 2006).

Cichla kelberi foi descrita recentemente e distingui-se das outras espécies mais semelhantes (*C. monoculus* e *C. pleiozona*) pela presença, nos adultos, de pequenas manchas claras na nadadeira anal e peitoral, e no lobo inferior da nadadeira caudal. Apresenta três barras verticais escuras nos flancos, uma barra occipital pronunciada nos indivíduos de maior porte e manchas escuras irregulares na região anterior do abdome. Possui de 76 a 83 escamas na fileira acima daquela que contém a linha lateral (fileira E1), sendo o número de escamas na E1 maior que em *C. monoculus* e menor que *C. pleiozona*. A distribuição geográfica da espécie são as bacias do rio Araguaia e baixo Tocantins e atualmente, em reservatórios do Rio Grande do Norte, Ceará, Minas Gerais e no rio Paraná, devido às translocações realizadas. Essa espécie, até então, era conhecida e confundida com *Cichla monoculus* (Kullander e Ferreira, 2006).

Apesar da importância do gênero *Cichla*, estudos que contemplem aspectos genéticos sobre os tucunarés ainda são escassos. Dados disponíveis para o gênero tratam de estudos citogenéticos apenas para *Cichla monoculus* e *C. temensis* da região amazônica (Brinn et al., 2004). Dessa forma, avanços nos estudos genômicos utilizando ferramentas cromossômicas e de análise de DNA no gênero *Cichla*, se fazem necessários. Este tipo de análise mostra-se promissora para uma melhor compreensão dos mecanismos de evolução genômica e rearranjos cromossômicos que estiveram envolvidos durante a diversificação e história evolutiva das espécies do gênero *Cichla*.

2. OBJETIVOS

Devido à relevante importância de espécies de ciclídeos sul-americanos, como as espécies do gênero *Cichla*, o qual possui grande valor para a pesca e ecologia, um melhor conhecimento do genoma destas espécies mostra-se extremamente necessário. Dessa forma este trabalho teve por objetivos:

• Isolamento e a caracterização de seqüências repetidas de DNA e seu mapeamento nos cromossomos de espécies do gênero *Cichla*.

Material e Métodos

3. MATERIAL E MÉTODOS

3.1. Material Biológico

Os exemplares de *Cichla kelberi* (Figura 3) (8 machos e 5 indivíduos) utilizados no presente estudo foram coletados no rio das Mortes, lagoa das Abelhas e lago Morto, na cidade de São Félix do Araguaia-MT, sendo amostrado também no rio Tietê (Barragem de Bariri, São Paulo).

A partir do material coletado foram preparadas suspensões celulares para análises de cromossomos mitóticos sendo também retiradas amostras de tecido (fígado, músculo, nadadeiras) fixadas e estocadas em álcool 100% a -20 °C, para posterior extração de DNA.

Os exemplares foram fixados em formol 4% e conservados em álcool 70% e posteriormente depositados na coleção do Laboratório de Biologia de Peixes do Departamento de Morfologia/UNESP/Botucatu com o seguinte número: 3292.

A identificação dos exemplares foi feita com base no trabalho de Kullander e Ferreira (2006).

Figura 3: Exemplar de Cichla kelberi.

3.2. MÉTODOS

3.2.1. Extração de DNA de tecidos

Esta técnica foi descrita por (Sambrook e Russel, 2001) e fundamentalmente envolve a purificação do DNA pela ação combinada de detergentes, proteinase K e RNAse, lavagem com fenol/clorofórmio e posterior precipitação pelo cloreto de sódio e etanol, conforme descrito a seguir:

- a) Fragmentar os pedaços de fígado, brânquias e músculos (fixados em etanol) em cadinhos com N₂ líquido;
- b) Adicionar ao tecido 3,98 ml de solução digestão (NaCl 0,1M; Tris-HCL 0,01 M pH=8,0; EDTA 0,025M pH=8,0; SDS 0,5%; RNAse 100 μg/ml; H₂O q.s.p.);
- c) Transferir o tecido macerado com 3,98 ml de solução de digestão para tubo Falcon de 15 ml;
- d) Colocar em banho-maria a 50 °C por meia hora. Passado esse tempo, cada tubo Falcon recebe 20 μL de proteinase K 100 μg/ml, permanecendo por mais duas horas no banho a essa temperatura;
- e) Retirar os tubos do banho-maria e adicionar 4 ml de Fenol: Clorofórmio: Álcool isoamílico (50:48:2);
- f) Agitar os tubos (bem fechados) suavemente por cerca de 15 minutos, até misturar bem os componentes;
- g) Centrifugar por 15 minutos a 3.000 rpm;
- h) Transferir a camada superior do tubo (DNA) para tubos novos, tomando cuidado para não pegar a camada de proteínas;
- i) Acrescentar 0,2 volumes de NaCl 1M de acordo com o volume obtido no item anterior + 2 volumes de etanol 100% gelado e movimentar suavemente o tubo para precipitar o DNA;
- j) Centrifugar por 15 minutos a 3.000 rpm;
- k) Descartar o sobrenadante, acrescentar cerca de 4 ml de etanol 70% gelado e centrifugar como no item anterior;
- Descartar o sobrenadante e levar o tubo para a estufa a 37 °C por até 30 minutos. Deixar overnight até secar o DNA;
- m) Adicionar até 1 ml de água Milli-Q autoclavada. Deixar na bancada ou na geladeira por pelo menos 24 horas para hidratação.

3.2.2. Visualização e quantificação do DNA em gel de agarose

A integridade do DNA foi analisada através de eletroforese em gel de agarose 1% de acordo com a metodologia descrita por Sambrook & Russel (2001), como a seguir:

- a) Montar a placa de eletroforese;
- b) Diluir a agarose (Ultra PureTM Agarose Invitrogen Life Technologies) em um volume apropriado de tampão TAE 1x (Tris-àcido acético-EDTA) para que o gel fique em uma concentração de 1%;
- c) Aquecer a solução até que esta fique translúcida;
- d) Deixar a solução esfriar um pouco e aplicar no suporte da cuba de eletroforese horizontal; ajustar o pente na cuba e deixar a solução de agarose polimerizar; preencher a cuba de eletroforese com tampão TAE 1x;
- e) Preparar o DNA a ser aplicado utilizando 2 µL de tampão LB e realizar a aplicação no gel;
- f) Aplicar DNA marcador de peso molecular conhecido (1Kb Plus DNA Ladder) e submeter a eletroforese a 110V/150 mA por 1 hora;
- g) Corar o gel em solução de brometo de etídeo (10 mg/ml) diluída a 0.1% em tampão TAE 1x;
- h) Realizar a observação do gel em transiluminador (Hoefer UV-25), sob luz ultravioleta, e posteriormente a foto-documentação através do programa EDAS (*Electrophoresis Documentation and Analysis System 120 Kodak Digital Science 1D*);
- i) Os pesos moleculares das amostras foram estimados através da comparação com o marcador.

3.2.3. Isolamento de seqüências repetidas por digestão enzimática

• Digestão com enzimas de restrição

O DNA genômico extraído de *Cichla kelberi* foi submetido a restrição enzimática com o intuito de serem identificadas bandas em gel de agarose contendo fragmentos repetidos de DNA. Para tanto, foram testadas 12 enzimas de restrição, sendo elas: *Afa*I, *Alu*I, *Bc*II, *BgL*II, *Dra*I, *Eco*RI, *Eco*RV, *Hind*III, *Hae*III, *Msp*I, *Ssp*I, *Xba*I.

O procedimento consistiu em:

- a) Colocar em um tubo estéril de 1,5 ml, para cada enzima de restrição, 30 μL de DNA genômico (100 ng/μL); 30U da enzima a ser utilizada; 10 μL de tampão de digestão e completar com água milli-Q para um volume final de 100 μL;
- b) Digerir *overnight* em banho-maria a 37 °C;

- c) Para precipitação e purificação do DNA digerido, acrescentar 2 μL de NaCl 5M gelado e 2 volumes de etanol (100%) gelado, agitar levemente e colocar em freezer a 76 °C negativos por 1 hora;
- d) Centrifugar a 13.000 rpm por 10 minutos a 4 °C;
- e) Descartar o sobrenadante e acrescentar 300 µL de etanol 70% gelado;
- f) Centrifugar a 13.000 rpm por 5 minutos a 4 °C;
- g) Descartar o sobrenadante, deixar secar a temperatura de 37 °C por aproximadamente 15 minutos e ressuspender em seguida em 12 μL de água milli-Q estéril;
- h) Aplicar o DNA digerido em gel de agarose 1% e submetê-lo a 50V/100 mA por 4 horas;
- i) Aplicar um marcador de peso molecular conhecido (1Kb Plus DNA Ladder), para posterior comparação.

3.2.4. Purificação dos fragmentos de DNA presente em gel de agarose

Para a purificação do fragmento de DNA produzido pela restrição enzimática, foi utilizado o kit *GFXTM PCR DNA and Gel Band Purification* (Amersham Pharmacia Biotech), seguindo as especificações do fabricante:

- a) Pesar um tubo de 1.5 ml vazio e anotar o peso;
- b) Cortar a banda de interesse do gel de agarose, corado com brometo de etídeo (10 mg/ml) sob transiluminador ultravioleta, e colocá-la no tubo;
- c) Cortar o pedaço de gel em vários pedaços menores, utilizando uma tesoura ou uma pinça;
- d) Pesar novamente o tubo e calcular o peso do fragmento de agarose;
- e) Adicionar 10 µL de "Capture Buffer" para cada 10 mg de gel e misturar em vórtex;
- f) Incubar a 60 °C em banho-maria até que a agarose dissolva (5-15 minutos);
- g) Centrifugar brevemente o tubo e coletar, com uma micropipeta, a amostra de agarose dissolvida;
- h) Transferir a amostra para uma coluna GFX colocada em um tubo coletor e incubar a temperatura ambiente por 1 minuto;
- i) Centrifugar o tubo coletor com a coluna GFX a 10.000 rpm por 30 segundos;
- j) Descartar o líquido do tubo coletor e colocar a coluna GFX novamente no tubo coletor;
- k) Adicionar 500 μL de "Wash Buffer" (tampão de lavagem) à coluna GFX e centrifugar a 10.000 rpm por 30 segundos;
- 1) Descartar o tubo coletor e transferir a coluna GFX para um novo tubo de 1.5 ml;
- m)Aplicar 50 μL de tampão de eluição TE (Tris-HCl 10 mM pH 8.0; EDTA 1 mM pH 8.0) diretamente sobre a fibra de vidro da coluna GFX;

- n) Incubar a amostra à temperatura ambiente por 1 minuto e centrifugar a 10.000 rpm por 1 minuto para recuperar o DNA;
- o) Estocar o DNA purificado a -20 °C e estimar o produto final em gel de agarose 1% corado com brometo de etídeo.

3.2.5. Clonagem do DNA repetido

• Ligação com o vetor

Os fragmentos de DNA foram submetidos a clonagem sendo inseridos em vetores plasmidiais utilizando o kit pMOs *Blue* (Amershan Biosciences) seguindo as especificações dos fabricantes, como a seguir:

- a) Preparar uma reação de pK em tubo eppendorf com 2,5 μL de H₂O milli-Q, 1 μL do tampão pK 10x, 0,5 μL de DDT 100 mM e 5 μL do produto a ser clonado;
- b) Incubar a 22 °C por 40 minutos;
- c) Aquecer a reação a 75 °C por 10 minutos e colocar no gelo por 2 minutos;
- d) Acrescentar ao produto da reação de pK 1 μ L (50ng/ μ L) do vetor pBluescript II KS+ e 1 μ L (4U) de DNA ligase;
- e) Incubar por um intervalo de 2 a 16 horas a 22 °C;
- f) Guardar em freezer a 20 °C negativos até a transformação em bactérias competentes.

• Transformação de bactérias competentes *Escherichia coli* DH5α com os vetores plasmidiais recombinantes

- a) Colocar 50 µL de bactérias competentes (acondicionadas a -70 °C) em um tubo de 1.5 ml;
- b) Adicionar 4 μL da reação de ligação (inserto-plasmídeo), misturando cuidadosamente com uma micropipeta;
- c) Manter o tubo em gelo por 30 minutos;
- d) Aplicar um choque térmico, aquecendo o tubo a 37 °C em banho-maria por exatamente 45 segundos;
- e) Colocar o tubo imediatamente no gelo e manter por 2 minutos;
- f) Adicionar 950 μL de meio LB líquido (peptona 1 %, NaCl 0,17 M, extrato de levedura 0,5 %, pH 7,5) a temperatura ambiente;
- g) Incubar a 37 °C por 1 hora, sob agitação a 225 rpm;
- h) Centrifugar por 5 segundos a 13.000 rpm e descartar o sobrenadante;

- i) Espalhar o produto de transformação em placas de Petri estéreis com meio LB sólido (peptona 1 %, NaCl 0,17 M, extrato de levedura 0,5 %, ágar 1,5 %, pH 7,5), contendo 2 µL de ampicilina (50 mg/ml) por mililitro de meio LB e 50 µL de X-Gal (5-bromo-4-cloro-3-indolil-(-D-galactoside) (50 mg/ml), para posterior seleção dos clones recombinantes (colônias brancas);
- j) Incubar as placas, com o meio de cultura voltado para cima, em estufa a 37 °C durante 12-16 horas.

3.2.6. Amplificação por PCR do fragmento clonado

Os vetores foram submetidos a PCR (*Polymerase Chain Reaction*) para confirmar a presença do inserto, sendo utilizados os seguintes *primers*:

Primer	Seqüência nucleotídica
M13F	5' CCCAGTCACGACGTTGTAAAACG 3'
M13R	5' AGCGGATAACAATTTCACACAGG 3'

Procedimento:

 a) Em um tubo estéril de 0,5 ml mantido no gelo, preparar a solução colocada na tabela abaixo de acordo com o número de reações desejado:

Água Milli-Q	16,75 μL
dNTP (8mM)	1,25 μL
Tampão 10X	2,5 μL
Primer M13F (10µM)	1,25 μL
Primer M13R (10µM)	1,25 μL
MgCl ₂ (50mM)	0,75 μL
<i>Taq polimerase</i> (5U/µL)	0,25 μL
Volume total	24 μL

- b) Colocar 24 µL da solução preparada em um tubo estéril mantido no gelo de acordo com a tabela da alínea a;
- c) Adicionar 1 µL do meio de cultura de cada amostra contendo a bactéria recombinante;
- d) Colocar os tubos no termociclador e executar o programa de amplificação, como apresentado abaixo:

Passos	Tempo/ T
1- Denaturação inicial do DNA	3'/95 °C
2- Denaturação do DNA	1'/95 °C
3- Anelamento dos <i>primers</i>	1′/50 °C
4- Extensão do DNA pela enzima Taq polimerase	2'/72 °C
5- Repetição dos passos de 2 a 4	35 vezes
6- Extensão final do DNA	2'/72 °C
7- Final	∞/4 °C

': minutos; ∞ : por tempo indeterminado

e) Alíquotas (três microlitros) do produto de PCR dos clones foram carregadas em gel de agarose
 1% e posteriormente submetidas à eletroforese por uma hora a 120 volts.

3.2.7. Mini-preparações para a purificação de plasmídeos recombinantes (*Kit Wizard Plus Minipreps DNA Purification System-* Promega)

Os clones de DNA obtidos a partir da transformação e posteriormente amplificados pela PCR foram purificados por mini-preparações, através da técnica lise alcalina (Sambrook *et al.* 1989), como descrita a seguir:

a) Colocar 1,5 ml do meio de cultura contendo as bactérias recombinantes em um eppendorf;

b) Centrifugar a 10.000 rpm por 2 minutos em temperatura ambiente para que as bactérias fiquem no fundo do tubo. Retirar o sobrenadante;

c) Ressuspender o material com 200 µL da solução de ressuspenção de células;

d) Adicionar 200 µL de solução de lise celular e inverter os tubos 4 vezes;

e) Acrescentar 200 μL de solução de neutralização aos tubos e inverter os tubos novamente por mais 4 vezes;

f) Centrifugar o lisado a 10.000 rpm por 5 minutos em uma microcentrífuga;

g) Para cada miniprep preparar uma minicoluna Wizard. Remover o plunger (parte de baixo rosqueável) e encaixar a minicoluna;

h) Pipetar 1 ml de resina de purificação na seringa;

i) Vagarosamente filtrar a mistura em minicoluna;

 j) Adicionar 2 ml de solução de lavagem (colunn wash solution) à seringa e empurrar a solução através da minicoluna;

k) Transferir a minicoluna para um tubo de 1,5 ml e centrifugar a 10.000 rpm por 2 minutos;

l) Transferir a minicoluna para outro tubo. Adicionar 40 µL de água para a minicoluna;

m) Aguardar 1 minuto de incubação em temperatura ambiente;

- n) Centrifugar a 10.000 rpm por 20 segundos. Remover e descartar a minicoluna;
- o) Guardar o eppendorf definitivo.

3.2.8. Seqüenciamento

As amostras de DNA purificadas foram utilizadas em reações de seqüenciamento através do *kit DYEnamicTM Terminator Cycle Sequencing* (Amershan Bioscience). O protocolo consiste em:

Reação de Seqüenciamento

a) Em um eppendorf mantido no gelo, para cada amostra a ser seqüenciada preparar a solução de seqüenciamento contendo:

Pré-Mix (Kit)	2μL
Primer F e R	2μL
DNA	Até 5µL
Água Milli-Q	XμL
Volume total	9μL

 b) Para desenvolver a reação de seqüenciamento foi utilizado o programa denominado M13Seq que consiste em:

Passos	Tempo/ ºT
1- Ciclo inicial	2'/96 °C
2- 35 ciclos	45"/96 °C
	30"/ 50 °C
	4'/ 60 °C
	∞/ 4 °C

': minutos; ": segundo; ∞: por tempo indeterminado

Remoção dos nucleotídeos não incorporados

Após a reação de amplificação (PCR) para seqüenciamento do DNA dos clones, realizouse a limpeza dos produtos amplificados para retirada de dideoxinucleotídeos não incorporados, como descrito a seguir:

- a) Adicionar 1 μL de acetato de sódio 1,5M/ EDTA 250 MM e 80 μL de etanol 95% gelado em cada microtubo contendo o produto de seqüenciamento;
- b) Misturar no vórtex rapidamente e centrifugar a 4 °C por 30 minutos a 14.000 rpm. Remover o sobrenadante cuidadosamente por aspiração;
- c) Adicionar 400 μL de etanol 70% gelado e, em seguida centrifugar por 10 minutos a 14.000 rpm;
- d) Descartar cuidadosamente o sobrenadante por aspiração, manter o material protegido da luz e secá-lo por cerca de 1 hora na estufa a 37 °C. O *pellet* seco pode ficar guardado por até 2 meses a 4 °C protegido da luz.

Limpeza e montagem das placas

As amostras amplificadas e purificadas foram analisadas em um seqüenciador automático ABI PRISMTM 377 DNA Sequencer (Perking-Elmer) de acordo com os procedimentos a seguir:

- a) Lavar as placas com detergente Extran 1%, enxaguar bem (aproximadamente 10 minutos) com água da torneira quente e, em seguida, enxaguar com 2,0 L de água Milli-Q a 85 °C. Colocar em suporte adequado para secagem;
- b) Colocar o cassete de montagem da placa sobre a bancada e sobre este a placa anterior. Sobre as bordas da placa anterior, colocar os espaçadores e, em seguida colocar a placa posterior. As anotações em relevo na placa devem ficar voltadas para fora;
- c) Alinhar as placas e deslizá-las até o encaixe de recorte da placa anterior com o pino existente na extremidade do cassete;
- d) Fechar as presilhas e colocar o adaptador onde será encaixada a seringa com gel de poliacrilamida.

Preparação e aplicação do gel de poliacrilamida

a) Preparar o gel de poliacrilamida (5% Long Ranger, 6M Uréia, 1X TBE) como segue:

Uréia	18 g
Água Milli-Q	25 ml
Long Ranger 50%	5 ml
TBE 10X	5 ml
Persufato de amônio	250 μL
TEMED	35 µL

- b) Misturar os quatro primeiros reagentes e filtrar em membrana com poros de ≤0,45µm.
 Adicionar o persufato e o TEMED no momento da aplicação do gel nas placas;
- c) Misturar suavemente a solução e, em seguida, transferir o gel para uma seringa de 50 ml, que deve ser imediatamente acoplada ao local de aplicação do gel para preenchimento das placas anteriormente preparadas;
- Aplicar o gel nas placas e, em seguida colocar o pente invertido no local apropriado entre as placas (lado oposto ao da aplicação);
- e) Esperar no mínimo 1 hora e 30 minutos para total polimerização;
- f) Remover o pente e lavar as placas sem retirá-las do cassete. As placas deverão estar completamente limpas, sem restos de poliacrilamida ou fragmentos de papéis utilizados para limpeza e secagem.

Preparação do Seqüenciador (aplicação das amostras e corrida)

- a) Preparar 1,5 L de TBE 1X para encher as cubas anódica e catódica;
- b) Colocar a cuba de cor âmbar na parte de baixo do seqüenciador, encaixar o cassete com as placas no seqüenciador e fechar as presilhas;
- c) Fechar a porta do seqüenciador e fazer um *Plate check* das placas para verificar se elas estão limpas;
- d) Encher as cubas com o tampão TBE 1X. Não se deve ultrapassar os limites marcados como máximo;
- e) Iniciar a pré-corrida para estabilização do meio e para atingir a temperatura de 51°C;
- f) Durante a pré-corrida ressuspender as amostras em 4,0 μL de tampão carregamento (Formamida: Blue dextran - 5:2). Passar os tubos pelo vórtex e denaturar as amostras por 5 minutos a 95 °C. Colocá-las imediatamente no gelo após a denaturação;

- g) Após 10 minutos de corrida, aplicar de 40 μL de tampão de carregamento no gel. Fechar a porta e deixar correr por dois minutos. Abrir a porta e retirar o excesso de corante com a seringa cheia de tampão de corrida;
- h) Colocar o pente de modo que toque todo o gel ao mesmo tempo, deslizando-o de forma que não se incline. Introduzi-lo apenas 2 mm no gel. Depois de introduzido não se pode ser removido, pois ocasionará vazamento das amostras;
- i) Aplicar 0,8 µL de amostra nos pocinhos ímpares;
- j) Fechar a porta do seqüenciador e esperar 5 minutos e aplicar o restante das amostras nos pocinhos pares, evitando assim a mistura das amostras;
- k) Cancelar a pré-corrida;
- Verificar o número de linhas, o tamanho da placa, a matriz adequada, o número de horas de corrida e importar a lista de amostras;
- m) Iniciar a corrida;
- n) Após o término da corrida (7 horas), posicionar as linhas sobre as amostras que aparecem na imagem do gel.

3.2.9. Isolamento de seqüências repetidas pela técnica de PCR

3.2.9.1. Amplificação dos retrotransposons Rex1, Rex3 e Rex6

Para obtenção de seqüências dos retrotransposons *Rex1*, *Rex3* e *Rex6*, foi utilizado o metódo de PCR, usando para tanto os respectivos *primers Rex1*, *Rex3* e *Rex6*, como mostra a tabela abaixo.

Tabela 5- Seqüências dos primers utilizados na amplificação dos fragmentos dos retrotransposons

Primers	Seqüências nucleotídicas	Referência	
Dav1	RTX1-F1 5' TTC TCC AGT GCC TTC AAC ACC	Volff et al. 1999,	
Kex1	RTX1-R3 5' TCC CTC AGC AGA AAG AGT CTG CTC	2000, 2001b	
Dou2	RTX3-F3 5' CGG TGA YAA AGG GCA GCC CTG	Volff et al. 1999,	
Kex3	RTX3-R3 5' TGG CAG ACN GGG GTG GTG GT)	2000, 2001b	
Dauk	Rex6-Medf1 5' TAA AGC ATA CAT GGA GCG CCAC	Valff et al 2001a	
кехо	Rex6-Medr1 5' GGT CCT CTA CCA GAG GCC TGGG	vom <i>et al</i> . 2001a	

Para amplificação dos retrotransposons foi utilizada a seguinte reação:

Água Milli-Q	19,15 μL
dNTPs (8Mm)	0,5 µL
Tampão 10X	2,5 μL
Primer Forward (10µM)	0,5 µL
Primer Reverse (10µM)	0,5 μL
MgCl ₂ (50Mm)	0,75 μL
Taq polimerase (5U/µL)	0,1 µL
DNA concentração	1,0 µL *
Volume total	25,0 μL

* Quantidade variável devido à concentração do DNA

Para a realização da reação foi utilizado o termociclador com a utilização do programa abaixo:

Passos	Tempo/ ºT
1- Denaturação inicial do DNA	5'/95 °C
2- Denaturação do DNA	40"/95 °C
3- Anelamento dos <i>primers</i>	40"/55 °C
4- Extensão do DNA pela enzima <i>Taq polimerase</i>	2'/72 °C
5- Repetição dos passos 2 a 4	34 vezes
6- Extensão do DNA	5'/72 °C
7- Final	∞/4 °C

": minutos; ": segundo; ∞: por tempo indeterminado

Alíquotas (três microlitros) do produto de PCR dos retrotransposons foram carregados em gel de agarose 1%, posteriormente submetido à eletroforese por uma hora a 120 volts.

3.2.9.2. Amplificação do Transposon Tc1

Para obtenção de seqüências do transposon Tc1, também foi utilizado o metódo de PCR, usando para tanto o *primer Tc1*, como mostra a tabela abaixo:

Tabela 6- Seqüência do primer utilizado na amplificação dos fragmentos do transposon

Primer	Seqüência nucleotídica	Referência
Tc1	5' TAC AGT GCC TTG CAT AAG TAT TCA CC	Volff et al.,1999,2000,2001b

Para amplificação do transposon *Tc1* foi utilizada a seguinte reação:

Água Milli-Q	14,0 µL
dNTP (8mM)	4,0 µL
Tampão 10X	2,5 μL
Primer Tc1 (10µM)	1,5 μL
MgCl ₂ (50mM)	1,5 μL
<i>Taq polimerase</i> (5U/µL)	0,5 µL
DNA concentração	1,0 µl *
Volume total	25,0 μL

* Quantidade variável devido à concentração do DNA

Para a realização da reação foi utilizado o termociclador com a utilização do programa abaixo:

Passos	Tempo/ ºT
1- Denaturação inicial do DNA	5'/95 °C
2- Denaturação do DNA	1′⁄95 °C
3- Anelamento dos <i>primers</i>	1′/55 °C
4- Extensão do DNA pela enzima <i>Taq polimerase</i>	2'/68 °C
5- Repetição dos passos 2 a 4	30 vezes
6- Extensão do DNA	5%68 °C
7- Final	∞/4 °C

': minutos; ∞ : por tempo indeterminado

Alíquotas (três microlitros) do produto de PCR do transposon foram carregados em gel de agarose 1%, posteriormente submetido à eletroforese por uma hora a 120 volts.

3.2.10. Análise das seqüências

As seqüências nucleotídicas foram processadas retirando-se as regiões dos plasmídeos e foram submetidas a pesquisas em bancos de seqüências (DDJ, EMBL, GenBank), através do programa BLAST/N ("*Basic Local Alignment Search Tool*") (Altschul *et al.*, 1990) para busca de seqüências nucleotídicas similares, através do National Center for Biotechnology Information (NCBI) (USA),

"website" (<u>http://www.ncbi.nlm.nih.gov/blast/</u>). Posteriormente realizou-se as seqüências consensos no programa BioEdit (Hall, 1999). As seqüências dos clones foram alinhadas *online* utilizando-se o programa ClustalW (Thompson *et al.*, 1994), website <u>http://align.genome.jp/</u>. A composição dos clones foram examinadas com o auxílio do software BioEdit 7.0 (Hall, 1999). As seqüências obtidas dos retrotransposons foram analisadas através do programa DAMBE versão 4.0.65 (Xia e Xie, 2001).

3.2.11. Obtenção dos cromossomos mitóticos através de preparações diretas

Os cromossomos mitóticos metafásicos foram obtidos de acordo com a metodologia adaptada para peixes por Bertollo *et al.* (1978), com alterações como descrita a seguir:

- a) Injetar intraperitonealmente colchicina 0,0025% na proporção de 0,1 ml para cada 100 g de peso do animal;
- b) Deixar o peixe em aquário bem aerado por 40 minutos. Em seguida sacrificá-lo e retirar a porção anterior do rim transferindo-a para uma solução hipotônica de KCl 0,075 M (6-8 ml);
- c) Divulsionar bem o tecido com o auxílio de uma seringa de vidro. Retirar o sobrenadante (suspensão celular) com o auxílio de uma pipeta Pasteur e colocar em tubo de centrífuga;
- d) Incubar a suspensão celular obtida em estufa a 37 °C por 23 minutos;
- e) Pré-fixar com 6 gotas de metanol: ácido acético (3:1) e ressuspender o material pipetando bem devagar por 100 vezes;
- f) Deixar descansar por 5 minutos, adicionar fixador até encher o tubo e ressuspender;
- g) Centrifugar por 10 minutos a 800 rpm. Desprezar o sobrenadante e completar para 6 ml com fixador pipetando por mais 100 vezes;
- h) Centrifugar por 10 minutos a 1.000 rpm, desprezar o sobrenadante e completar novamente para 6 ml de fixador, repetindo essa lavagem por mais duas vezes;
- i) Após a última lavagem, diluir o material acrescentando fixador, de forma que este apresente um aspecto um pouco turvo;
- j) Preparar as lâminas que deverão estar previamente aquecidas em banho-maria a 60 °C.

3.2.12. Hibridação in situ por fluorescência- FISH

As sondas dos retrotransposons *Rex1, Rex3, Rex6*, transposon *Tc1* obtidas através de PCR e *Tuc* obtida por digestão enzimática foram marcadas com biotina pela técnica de *nick translation*, segundo as instruções do fabricante (BioNickTM Labelling System- Invitrogen) e, posteriormente, procedeu-se à técnica de hibridação descrita por Pinkel *et al.*, 1986 com modificações apresentadas por Martins e Galetti, (2001).

Marcação das sondas

As sondas foram marcadas pelo método de nick translation utilizando o Kit BioNickTM Labeling System (Invitrogen) como a seguir:

 a) Em um tubo eppendorf, mantido no gelo, preparar a solução descrita na tabela abaixo, para uma lâmina,

Mix dNTP 10x	1 μL
DNA sonda (200ng//µL)	1 μL
Mix de enzima 10x	1 μL
Água milli-Q	6 µL
Volume total	9 μL

b) Misturar bem, centrifugar brevemente e incubar a 16 °C por duas horas;

- c) Adicionar 1 µL de stop buffer, 1 µL de acetato de sódio 3 M e 22 µL de etanol 100% gelado;
- d) Misturar invertendo o tubo, centrifugar rapidamente e colocar no freezer 70 °C por 1 hora;
- e) Centrifugar por 15 minutos a 15.000 rpm a 4 °C;
- f) Descartar o sobrenadante e adicionar 50 µL de etanol 70% gelado;
- g) Centrifugar por 5 minutos a 15.000 rpm a 4 °C;
- h) Descartar o sobrenadante com cuidado e deixar secar;
- i) Ressuspender em 16 µL de água Milli-Q.

Tratamento das lâminas

As lâminas podem ser preparadas com os cromossomos com um dia de antecedência ou no momento do uso. Para cada lâmina:

- a) Colocar 100 μL de RNAse 40 μg/mL (0,4 μL de RNAse 10 mg/mL e 99,6 μL de 2xSSC) sobre a lamínula, aderir a lâmina sobre esta lamínula e deixar em câmara úmida (umidecida com 2xSSC) a 37 °C por 1 hora e 30 minutos;
- b) Lavar a lâmina duas vezes em 2xSSC durante 10 minutos cada;
- c) Desidratá-las em série alcoólica 70%, 85% e 100% gelado durante 10 minutos cada;

- d) Mergulhar a lâmina em formamida 70% em 2xSSC por 4 minutos a 70 °C (guardar a formamida para reutilizá-la no dia seguinte);
- e) Desidratar em série alcoólica 70%, 85% e 100% a 20 °C por 5 minutos cada (este passo é muito importante, pois as lâminas devem ser passadas rapidamente da formamida para o álcool). Deixar secar ao ar livre.

Solução de hibridação

Em um tubo eppendorf preparar a solução de hibridação, na proporção descrita abaixo:

Formamida (concentração final: 50%)	40 µL
Sulfato de dextrano (concentração final: 10%)	16 µL
20xSSC (concentração final: 2xSSC)	8 µL
Sonda biotinilada	16 µL
Volume total	80 µL

Submeter a solução de hibridação a denaturação da sonda a 95 °C por 10 minutos e passála imediatamente ao gelo.

Hibridação

Colocar 80 µL de solução de hibridação sobre a lamínula e inverter a lâmina sobre a lamínula. Manter as lâminas com o material voltado para baixo em câmara úmida (2xSSC) a 37 °C *overnight*.

Lavagens

Lavar em 2xSSC em temperatura ambiente apenas para tirar a lamínula e escorrer bem a lâmina sem deixar secar. Deste momento em diante as lâminas não podem secar:

- a) Lavar em formamida 50%/2XSSC por 15 minutos a 37 °C (utilizar a mesma solução do dia anterior – formamida 70% e transformá-la para 50%);
- b) Lavar em 2xSSC por 15 minutos a 37 °C por uma vez;
- c) Lavar em 2xSSC por 15 minutos à temperatura ambiente;
- d) Lavar em 4xSSC à temperatura ambiente (só para enxaguar).

Detecção e amplificação do sinal da sonda

a) Sobre uma lamínula colocar 0,1μL de avidina-FITC 0,07% em 70 μL de tampão C (0,1 M de bicarbonato de sódio, pH 8,5 e 0,15 M de NaCl);

- b) Inverter a lâmina sobre esta lamínula e deixar por 1 hora em câmara úmida com 2xSSC a 37 °C;
- c) Após este tempo, lavar as lâminas 3 vezes por 5 minutos cada, com agitação, em tampão de bloqueio (NaHCO₃ 1.26% / citrato de sódio 0,018% / Triton 0,0386% em água destilada pH 8,0 e leite em pó desnatado 1%) recém-preparado a 42 °C. Escorrer a lâmina e secá-la por baixo;
- d) Sobre uma lamínula colocar 80 μL de anti-avidina biotina-conjugada 2,5% (2 μL de anti-avidina estoque em 78 μL de tampão de bloqueio), inverter a lâmina sobre a lamínula e deixar em câmara úmida com 2xSSC a 37 °C por 30 minutos;
- e) Novamente lavar em tampão de bloqueio três vezes por 5 minutos cada com agitação a 42 °C;
- f) Repetir os passos de (a) até (e);
- g) Aplicar novamente o FITC e fazer as lavagens como descrito no passo (e);
- h) Lavar em 4xSSC/Triton 2% duas vezes por 3 minutos cada com agitação;
- i) Lavar em 4xSSC/Triton 0,2% duas vezes por 3 minutos cada com agitação;
- j) Escorrer as lâminas e deixar secando ao ar.

Montagem das lâminas

Secar a lâmina e montar com iodeto de propídio na proporção de 20 µL de meio de montagem *antifading* com 0,7 µL de solução de iodeto de propídio a 50 µg/mL.

Processamento das imagens

Os cromossomos metafásicos mitóticos foram analisados em um fotomicroscópio de fluorescência Olympus BX 61. As imagens foram capturadas através de uma câmera digital (Olympus DP70) e do programa Image-Pro MC 6.0 e processadas através do programa Adobe Photoshop CS.

Resultados e Discussão

4. RESULTADOS E DISCUSSÃO

4.1. Isolamento e caracterização de seqüências repetidas no genoma de *Cichla kelberi* por restrição enzimática

A extração de DNA a partir de tecidos fixados em álcool possibilitou obter DNAs de excelente qualidade para as amostras de tecidos analisadas.

Amostras de DNA genômico de *Cichla kelberi* foram submetidas ao processo de digestão enzimática e pôde-se observar a presença de uma banda de cerca de 650 pb visualizada por meio de eletroforese em gel de agarose, referente à amostra digerida pela enzima *Xba*I (Figura 4). Esta banda foi extraída do gel, purificada e inserida em vetor de clonagem por meio do kit *pMOs* e a construção recombinante resultante foi inserida em bactérias *Escherichia coli*.

Figura 4: Gel de agarose 1% corado com brometo de etídeo apresentando o fragmento de restrição produzido pela digestão do DNA total de *Cichla kelberi* com a endonuclease *Xba*I. L- marcador de peso molecular em pares de bases. Amostras de 1 a 5 representam DNA genômico digerido com as enzimas *Alu*I, *Hae*III, *Msp*I, *Xba*I e *Eco*RI, respectivamente. A seta indica a banda produzida após a digestão com a *XbaI*.

A confirmação da presença de inserto nos plasmídeos recombinantes foi realizada através do método de PCR utilizando os *primers M13F* e *M13R*. O produto de PCR dos clones gerou fragmentos maiores e menores que 650 pb, como pode ser observado na figura 5. Os fragmentos maiores foram escolhidos, uma vez que os *primers* amplificam também pequenos segmentos dos plasmídeos que flanqueiam a região de inserção, demonstrando assim a presença do inserto.

Posteriormente, foram selecionados dez clones, sendo estes estocados em glicerol 25% e mantidos em freezer -70 $^{\circ}$ C.

Figura 5: Gel de agarose 1% corado com brometo de etídeo apresentando os produtos de PCR representativos de clones recombinantes obtidos a partir da banda de 650 pb produzida pela digestão com a enzima *Xba*I. L- marcador de peso molecular em pares de bases (marcador 1kb plus-Invitrogen). As amostras 1, 3, 4, 6, 7, 8, 9, 11, 13 e 14 representam os clones positivos candidatos a conter o fragmento de DNA produto da digestão com a *Xba*I.

Os clones recombinantes de *Cichla kelberi* recuperados foram denominados TucXba1, TucXba3, TucXba4, TucXba6, TucXba7, TucXba9, TucXba11, TucXba13, TucXba14 e TucXba15 e submetidos a reações de seqüenciamento. Foram obtidas seqüências para oito clones como observado na figura 6.

TucXba-1

TucXba-3

TucXba-4

TucXba-6

GTCCTTAGCCCCATCAGCAGGACTGGTTAGGAGCCTTACAAAATTATTCTCCAACAGGTC ACTGGTGTGAATGTCTCTGAACAACGATCAGAAACGATTTCTTGGAGGGTGGCCTGAGG GGCCAGACGTCCTCTGGTCCTCGTGCCCAGCACCATGGAGCCCTGGAGCATTGGCATT GCCATAGAATACCAGAATTGGCAGGTCCACCACTGGTGCCTGTGCCTTTCACAGATGA GAGCAGGTTCACCCTGAGCACATGTGATAGACGTGGAGAGAGGCGGGGAGAAGCCGTGGAGA ACATTATGCCTGTAACAATGTTCAGCATGACTGGTTTGGTGGTGGGTCAGTGGATGGTCTG GGGAGGCATATCCATGGAGGGACGCACAGACCTCTACAGGGCAAGGCGGGCACCGTG ACTGCCTTTAGGTATCGCAATGAATCCTTGGACCCCATTGTGAGAACCTGCACTGGTGC GCGGGGCCTGGGGTTCCCCCGGGTCCACGACAATACCCAGCCTCATGTGAGAGCCGCCTGAC GCGGGGCCTTAGGGGTTCCCCTTGTCACGACAATACCCAGCCTCATGTGAGAGCCGCACGAGTAT GCCAGGCAGTTTCTAAGATCCATTATGAACTAGTTAGAATCCTTCGAAGTCGACCTTGCA AGGCATGCAAGCTTTCCCCTTATAGGAGTGGGA

TucXba-7

TucXba-9

TucXba-11

TucXba-15

Figura 6: Seqüências de fragmento de DNA isolado por restrição enzimática.

Os resultados destas análises mostraram uma predominância de nucleotídeos A-T para os clones TucXba3, TucXba4, TucXba7 e TucXba9, enquanto os clones TucXba1, TucXba6 e TucXba11 mostraram-se muito similares em suas seqüências e apresentaram um percentual médio de adenina e timina de 48,9% (Tabela 7).
Clones	Tamanho (pb)	Composição nucleotídica AT (%)
TucXba1	592	48,1
TucXba3	627	62,2
TuXbac4	728	61,1
TucXba6	635	48,5
TucXba7	679	58,6
TucXba9	641	59,2
TucXba11	694	50,1
TucXba15	620	63,2

Tabela 7- Composição nucleotídica dos clones isolados de Cichla kelberi por restrição enzimática

Posteriormente, foi realizada uma pesquisa em bancos de seqüências (DDBJ,EMBL, GenBank) através do programa BLAST/N (Altschul *et al.*, 1990) para a busca de seqüências nucleotídicas similares às seqüências isoladas. A comparação das seqüências dos clones TucXba1, TucXba6 e TucXba11 com as seqüências depositadas no GenBank mostrou alta similaridade destas seqüências com seqüências repetidas dispersas no genoma de peixes e anfíbios. Todos os segmentos que apresentaram similiaridade maior que 70% estão listados na tabela 8. O maior nível de similaridade ocorreu em relação ao peixe *Polypterus bichir* (cerca de 87%) e *Takifugu rubripes* (84% similaridade). Os fragmentos isolados apresentaram 82% de similaridade com seqüências flanqueadoras do gene da transcriptase reversa de *Oryzias melastigma*. Tal fato é um forte indício de que as seqüências repetidas isoladas representam um segmento de um elemento retrotransponível. Outro indício de tal afirmação é o fato de que esse segmento isolado apresenta-se disperso em diferentes regiões do genoma dos diferentes espécimes com os quais possuem similaridade (Tabela 8). **Tabela 8-** Similaridade obtida junto ao NCBI com os clones TucXba1, TucXba6 e TucXba11 isoladospor restrição enzimática

Egnégieg	Similaridada ancontrada	N. acesso	Similaridade
Especies	Similaridade encontrada	GenBank	(%)
Polypterus bichir	Região repetida clone -22F22 localizada nas regiões de 47068 a 47590	AC126321	87
Takifugu rubripes	Cluster do gene HoxBa localizado nas regiões 81250 a 81173	DQ481665	84
Oryzias melastigma	Segmento flanqueia o gene da transcriptase reversa localizado nas regiões 2328 a 2055	DQ286655	82
Gasterosteus aculeatus	Segmento do clone CH213-60G7 localizado nas regiões 126051 a 125904	AC145764	81
Astatotilapia burtoni	Cluster do gene Hoxdb localizado nas regiões 18628 a 18904	EF594316	79
Salmo salar	Locus alpha/delta TCR do clone 39N03 localizado nas regiões 105217-105739	EF467298	77
	Região lócus gamma TCR do clone 115J17 localizado nas regiões 165760 a 165238	EU221176	77
	Gene transposase Tc1-like localizado nas regiões 552 a 1074	EF685955	76
	Segmento do gene TAPBP região classe I do complexo histocompatibilidade localizado nas regiões 47610 a 48130	EF427379	77
	Intron do gene IFN2 localizado nas regiões 4656 a 4138	AM489416	76
Oncornynchus mykiss	Região B class I MHC	AB162343	76
Xenopus tropicalis	Segmento do clone CH216-11K6 localizado nas regiões 1159 a 1678	AC146868	76
	Segmento do clone CH216-138M21 localizado nas regiões 93370 a 93868	AC147826	76
	Segmento do clone CH216-52F23 localizado nas regiões 142966 a 143385	AC166141	75

Rivulus marmoratus	Segmento do gene vitellogenin localizado nas regiões 1054 a 1434	AY279214	75
Oncorhynchus tschawytscha	Segmento do gene prolactina II localizado nas regiões 5855 a 6333	S66606	75
	Segmento do clone CH211-105F16	AL928837	73
Danio rerio	Segmento do clone DYEY-217K21 localizado nas regiões 43207 a 42747	BX072538	71
Danio rerio	Segmento do clone CH211 a 133F22 localizado nas regiões 155309 a 154880	BX649367	71

Para verficar as relações existentes entre as seqüências isoladas no presente trabalho com as obtidas no banco de dados do NCBI (Tabela 8) foi construído um dendrograma através do programa ClustalW online utilizando a distância p como parâmtro para as análises. O dendrograma obtido mostra claramente a presença de dois grandes grupos, denominados de "clado A" e "clado B", e as três sequências isoladas do genoma de C. kelberi se posicionam apenas no clado A (Figura 7). As seqüências isoladas mostraram-se mais relacionadas com as espécies Astatotilapia burtoni (Cichlidae) e Polypterus bichir (Polypteridae), constituindo um subgrupo dentro do clado A. A familia Polypteridae pertence a uma ordem basal dentro dos Actinopiterygii. Tal fato indica que tais seqüências são bem conservadas em muitos grupos dessa classe (Tabela 8). Alta similaridade do elemento Tuc foi encontrada também para a espécie de anfíbio, Xenopus tropicalis. Além disso, o elemento Tuc apresentou similaridade ainda com outras espécies de anfíbios como Rana chensinensis e com mamíferos como Bos taurus e humanos. A similaridade encontrada para as espécies de mamíferos corresponde a pequenos segmentos deste elemento, porém com similaridade acima de 80%. A presença da sequência Tuc em diversos vertebrados indica que a origem deste elemento remonta a diversificação dos principais grupos de vertebrados. A divisão do dendrograma em dois grandes clados (A e B) sugere que o elemento *Tuc* constitui duas subfamílias distintas de elementos retrotransponíveis presentes no genoma dos vertebrados, sugerindo que estudos mais detalhados das seqüências de base de seu DNA deverão ser empreendidos no sentido de elucidar integralmente a natureza e o padrão de distribuição dessas sequências tanto em C. kelberi como em outros organismos vertebrados.

Figura 7: Dendograma baseado nas análises de distância *p* obtido pelo programa ClustalW *online* a partir das seqüências *Tuc* isoladas e de seqüências obtidas do banco de dados do NCBI. Neste dendograma, o nome das seqüências corresponde às espécies da tabela 9. A barra indica a distância genética e os valores de *bootstrap* encontram-se indicados nos nodos. Valores de *bootstrap* abaixo de 50 foram omitidos.

4.2. Isolamento e caracterização de seqüências repetidas no genoma de *Cichla kelberi* por PCR

Seqüências dos retrotransposons *Rex1*, *Rex3* e *Rex6* foram identificadas e isoladas do DNA genômico da espécie *Cichla kelberi* através de reações de PCR. Esses elementos apresentaram um tamanho de aproximadamente 600 pares de bases (Figura 8).

Figura 8: Gel de agarose 1% corado com brometo de etídeo mostrando produtos de PCR obtidos com os *primers Rex1* (a), *Rex3* (b) e *Rex6* (c) a partir do DNA genômico de representantes de *Cichla kelberi* (1-5), (1-8), (1-6). L – marcador de peso molecular em pares de bases.

Os três conjuntos de *primers* utilizados mostraram-se bastante eficientes na amplificação de fragmentos de DNA por PCR. Os fragmentos de DNA obtidos foram seqüenciados e a análise comparativa desses fragmentos junto ao banco de dados do NCBI permitiu verificar que os fragmentos amplificados correspondiam a segmentos de elementos transponíveis da família *Rex*. Os *primers* utilizados no presente estudo já foram empregados no isolamento destes elementos em diversos grupos de peixes (Tabela 3). As seqüências obtidas foram submetidas a comparações através do sistema Blastn do NCBI para verificar a similaridade com outras seqüências já depositadas nesse banco de dados. As comparações possibilitaram detectar altos níveis de similaridade entre as seqüências isoladas e as seqüências de outras espécies de peixes já depositadas para estes elementos.

Foi possível verificar que os retrotransposons isolados *Rex1*, *Rex3* e *Rex6* apresentaram alta similaridade com clones destes elementos com outras espécies de ciclídeos disponíveis nos bancos de dados do NCBI, como *Oreochromis niloticus*, *Cichlasoma labridens* e *Hemichromis bimaculatus* (Tabelas 9, 10 e 11). No entanto, alta similaridade também foi detectada em relação a outras espécies de peixes pertencentes a outras famílias e ordens. Os resultados apresentados para o elemento *Rex1*

evidenciam alta similaridade com espécies de peixes da ordem Perciformes, além de outras ordens (Tabela 9). Para os elementos Rex3 e Rex6 foram encontrados poucas espécies de Perciformes no banco de dados do NCBI que apresentaram similaridade (Tabela 10 e 11). Isso ocorre, provavelmente, porque ainda são poucos os estudos realizados com esses elementos dentro da ordem Perciformes, ou seja, ainda são poucas as seqüências desses elementos depositadas no banco de dados. Os resultados com Rex3 e Rex6 revelam uma grande similaridade com espécies de peixes da ordem Cyprinodontiformes, mostrando o quão conservado esses elementos se apresentam em peixes, assim como observado também para o elemento Rex1. O elemento Rex6 é o elemento menos estudado dos três, sendo escassos trabalhos com esse elemento e conseqüentemente poucos são os dados depositados no NCBI (Volff *et al.*, 2001c). Estas observações corroboram aquelas encontradas por Volff *et al.* (2000) e Ozouf-Costaz *et al.* (2004), mostrando a ampla distribuição dos elementos Rex nos peixes.

As seqüências *Rex1*, *Rex3* e *Rex6* obtidas de *Cichla kelberi* no presente trabalho e de outras espécies de peixes na base de dados do NCBI foram alinhadas através do programa DAMBE. O alinhamento das seqüências foi realizado em duas etapas. Primeiramente as seqüências *Rex1*, *Rex3* e *Rex6* de *Cichla kelberi* foram alinhadas independentemente com aquelas da mesma natureza obtidas de outras espécies de ciclideos já depositadas no NCBI, constantes das tabelas 9, 10 e 11. Em uma segunda etapa os segmentos de *Rex1*, *Rex3* e *Rex6* foram alinhados em conjunto com todas as espécies constatantes nas tabelas 9, 10 e 11.

O alinhamento das seqüências *Rex1* e *Rex6* (Anexos I e III) de *C. kelberi* com a dos demais peixes ciclídeos evidenciou que aproximadamente 71% dos sítios compartilhados entre eles são conservados, ao passo que o alinhamento das seqüências *Rex3* (Anexo II) dos mesmos mostrou que apenas 39% dos sítios compartilhados são conservados. Esses dados indicam claramente que as seqüências dos retroelementos *Rex1* e *Rex6*, correspondentes a segmentos dos genes de transcriptase reversa, encontram-se mais conservadas entre os espécimes de peixes analisados em relação às seqüências do retroelemento *Rex3*.

O alinhamento das seqüências *Rex1* e *Rex6* (Anexos IV e VI) de *C. kelberi* com as mesmas de todas as outras espécies analisadas (Tabelas 9 e 11) mostrou que, respectivamente, 37% e 55% dos sítios compartilhados entre elas são conservados, ao passo que o alinhamento das seqüências *Rex3* (Anexo V) das mesmas evidenciou que apenas 26% das bases compartilhadas correspondem a sítios conservados do gene da transcriptase reversa. Como anteriormente descrito, percebe-se que as seqüências *Rex3* de *C. kelberi* são mais variáveis que as seqüências *Rex1* e *Rex6* tanto de outros ciclídeos quanto dos demais peixes analisados pelo presente trabalho.

 Tabela 9- Similaridade encontrada para o elemento Rex1 de Cichla kelberi em relação a outras espécies de peixes

Espécies	Similaridade encontrada	N. acesso GenBank	Similaridade (%)
	Retrotransposon Rev1 clone rev1-Cil-2	A 1288467	89
	Retrotransposon <i>Rex1</i> clone <i>rex1</i> -Cil-3	AI288469	89
Cichlasoma labridens	Retrotransposon Rex1, clone rex1-Cil-1	AI288470	88
	Retrotransposon Rev1, clone rev1-Cil-4	A 1288468	88
	Red of an sposon Rex1, clone rex1-Cii-4	10200400	00
	Retrotransposon Rex1, clone rex1-Orn-5	AJ288473	87
Oreochromis niloticus	Retrotransposon <i>Rex1</i> , clone <i>rex1</i> -Orn-1	AJ288471	86
	Retrotransposon <i>Rex1</i> , clone <i>rex1</i> -Orn-4	AJ288476	86
	Retrotransposon <i>Rex</i> 1, clone <i>rex1</i> -Heb-1	AJ288480	85
	Retrotransposon <i>Rex1</i> , clone <i>rex1</i> -Heb-2	AJ288478	85
Hemichromis bimaculatus	Retrotransposon <i>Rex1</i> , clone <i>rex1</i> -Heb-4	AJ288479	85
	Retrotransposon <i>Rex1</i> , clone <i>rex1</i> -Heb-5	AJ288481	85
		12200101	
	Retrotransposon Rex1, clone rex1-Anj-2	AJ288465	76
Anguilla japonica	Retrotransposon Rex1, clone rex1-Anj-3	AJ288466	76
	Retrotransposon Rex1, clone rex1-Anj-1	AJ288464	75
	1 , 3		
Takifugu rubripes	Gene HBA3	AY170464	75
	Retrotransposon não-I TR Revilh	AV331098	75
Trematomus newnesi	Retrotransposon não ITR Revia	AV331007	73
	Kerotransposon nao-LTK KexTu	A1551077	15
Anguilla anguilla	Retrotransposon <i>Rex1</i> , clone <i>rex1</i> -Ana	AJ288463	74
Notothania coriicans	Retrotransposon não-LTR Rex1a	AY331095	74
Notothenia coriiceps	Retrotransposon não-LTR Rex1b	AY331096	74
Commendation and in the	Retrotransposon não-LTR Rex1a	AY331099	74
Gymnoaraco acuticeps	Retrotransposon não-LTR Rex1b	AY331100	73
	Retrotransposon não-LTR Rex1b	AY331102	73
Dissosticnus mawsoni	Retrotransposon não-LTR Rex1b	AY331101	72
Battrachocottus	Genes orf1 e orf2	U18939	73
baikalansis	Retrotransposon <i>Rex1</i> , clone <i>rex1</i> -Bab1	AJ288461	72
	Retrotransposon <i>Rex1</i> , clone <i>rex1</i> -Bab-2	AJ288459	72
Xiphophorus maculatus	Retrotransposon Rex1, clone rex1-Ximj3	AJ288451	72
Fundadas on	Retrotransposon Rex1, clone rex1-Fun3	AJ288485	72
<i>runaulus</i> sp.	Retrotransposon Rex1, clone rex1-Fun1	AJ288484	72
Orvzias latines	Retrotransposon <i>Rex1</i> , clone <i>rex1</i> -Orl-2	AY288455	72
5. Jano 100 pcb	Retrotransposon <i>Rex1</i> , clone <i>rex1</i> -Orl-4	AJ288456	72

 Tabela 10- Similaridade encontrada para o elemento Rex3 de Cichla kelberi em relação a outras espécies de peixes

Fanérica	Similaridada ancontrada	N. acesso	Similaridade
Especies	Similaridade encontrada	GenBank	(%)
	Retrotransposon <i>Rex3</i> , clone <i>rex3</i> -Ore3	AJ400369	90
	Retrotransposon <i>Rex3</i> , clone <i>rex3</i> -Ore5	AJ400370	90
Oreochromis niloticus	Retrotransposon <i>Rex3</i> , clone <i>rex3</i> -Ore1	AJ400368	89
	Retrotransposon Rex3, clone rex3-Ore4	AJ400372	89
	Retrotransposon <i>Rex3</i> , sequência <i>rex3</i> -Cic4	AJ400375	87
Cichlasoma labridens	Retrotransposon Rex3, sequência rex3-Cic2	AJ400373	87
	Retrotransposon não-LTR Rex3	AJ621035	82
Tetraodon nigroviridis	Retrotransposon não-LTR Rex3	AJ312226	81
	Retrotranspson Rex3, seqüência rex3-Eso2	AJ400446	81
Esox lucius	Retrotransposon <i>Rex3</i> , seqüência <i>rex3</i> -Eso4	AJ400445	81
	Retrotransposon Rex3, seqüência rex3-Eso3	AJ400444	80
Fugu rubripes	Gene (Pcnx11) pecanex	AF154413	81
Battrachocottus baikalensis	Retrotransposon <i>Rex3</i> , seqüência <i>rex3</i> -Bot4	AJ400359	81
Xiphophorus maculatus	Retrotransposons Rex3, Rex2, Rex1, seqüência	AY298859	80
· · ·	completa		
	Petrotransposon Para sequiância rara Viba	A 1400301	80
Xiphophorus helleri	Retrotransposon Rev3, sequencia rev3-Alla	AJ400391	80
	Renotiansposon Rex3, sequencia rex3-Anio	AJ400373	80
	Retrotransposon <i>Rex3</i> , seqüência <i>rex3</i> -Pom2	AJ400380	80
Poecilia mexicana	Retrotransposon Rex3, seqüência rex3-Pom1	AJ400385	79
	Retrotransposon Rex3, seqüência rex3-Pof5	AJ400379	80
Poecilia formosa	Retrotransposon Rex3, seqüência rex3-Pof3	AJ400382	80
Gambusia affinis	Retrotransposon Rex3, seqüência rex3-Gam2	AJ400408	80
	Retrotransposon <i>Rex3</i> , seqüência <i>rex3</i> -Pha4	AJ400407	80
Phallichthys amates	Retrotransposon Rex3, seqüência rex3-Pha2	AJ400413	80
	Patrotrononon Part sogiiância rart Ory?	A 1400420	80
Orvzias latines	Retrotransposon Rev3, sequencia rev3-Ory5	AJ400430 AJ400431	80
	Renotiansposon Reas, sequencia reas-oryo	10700731	00
Fundulus sp.	Retrotransposon Rex3, seqüência rex3, Fun2	AJ400377	79
Zebrafish	Sequência completa com clone DKEY-24C17	CR628327	79
Heterandria bimaculata	Retrotransposon Rex3, sequência rex3-Het6	AJ400388	79
	Retrotransposon Rara següência rara Doll	A 1/100386	70
Poecilia latipinna	Retrotransposon Rev3, sequencia rev3-1011 Retrotransposon Rev3 sequencia rev3-Pol2	A 1400383	79
	remonunisposon rens, sequencia rens-1 012	10700000	17

Gasterosteus aculeatus	Seqüência completa com clone CH213-10I3	AC146680	78
Cyprinus carpio	Retrotransposon <i>Rex3</i> , seqüência <i>rex3</i> - Cyp3	AJ400453	78
	Retrotransposon <i>Rex3</i> , seqüência <i>rex3</i> -Cyp4	AJ400450	78
	Retrotransposon <i>Rex3</i> , seqüência <i>rex3</i> -Cyp2	AJ400448	77
Siniperca chuatsi	Retrotransposon <i>Rex3</i> , seqüência <i>rex3</i> -Sin2	AJ400439	76
	Retrotransposon <i>Rex3</i> , seqüência <i>rex3</i> -Sin5	AJ400441	75

Tabela 11- Similaridade encontrada para o elemento *Rex6* de *Cichla kelberi* em relação a outras espécies de peixes

Espécies	Similaridade encontrada	N. acesso GenBank	Similaridade (%)
Ciebles en a labridare	Retrotransposon Rex6, clone rex6- Cla-2	AJ293549	87
Cichiasoma labriaens	Retrotransposon Rex6, clone rex6- Cla-1	AJ293548	78
	Retrotransposon Rex6, clone rex6-Oni-1	AJ293545	80
Oreochromis niloticus	Retrotransposon Rex6, clone rex6-Oni-2	AJ293546	79
	Retrotransposon <i>Rex</i> 6, clone <i>r</i> ex6- Oni-3	AJ293547	78
	Retrotransposon Rex6, clone rex6- Pfo-2	AJ293534	81
	Retrotransposon Rex6, clone rex6-Pfo-5	AJ293537	81
Poecilia Formosa	Retrotransposon Rex6, clone rex6-Pfo-6	AJ293538	81
	Retrotransposon Rex6, clone rex6-Pfo-4	AJ293536	80
	Retrotransposon <i>Rex6</i> , clone <i>rex6</i> -Hbi-6	AJ293544	80
T I I I I I I	Retrotransposon <i>Rex6</i> , clone <i>rex6</i> - Hbi-2	AJ293540	79
Heterandria bimaculata	Retrotransposon <i>Rex6</i> , clone <i>rex6</i> - Hbi-4	AJ293542	79
	Retrotransposon Rex6, clone rex6- Hbi-5	AJ293543	79
	Retrotransposon Rex6, clone rex6- Gaf-2	AJ293528	79
Gambusia affinis	Retrotransposon Rex6, clone rex6-Gaf-3	AJ293526	79
Gambusia ajjinis	Retrotransposon <i>Rex6</i> , clone rex6, Gaf-4	AJ293530	79
	Retrotransposon <i>Rex</i> 6, clone <i>rex</i> 6- Gaf-5	AJ293531	79
	Retrotransposon Rex6. clone rex6- Pgr-1	AJ293523	79
	Retrotransposon <i>Rex6</i> , clone <i>rex6</i> - Pgr-2	AJ293524	79
Poeciliopsis gracilis	Retrotransposon <i>Rex6</i> , clone <i>rex6</i> - Pgr-3	AJ293525	79
	Retrotransposon <i>Rex6</i> , clone <i>rex6</i> - Pgr-4	AJ293526	79
		A 1202522	70
Ormaniana Intina an	Retrotransposon <i>Rexo</i> , clone <i>rexo</i> - Ola-5	AJ293522	79 70
Oryzias latipes	Retrotransposon Rexo, clone rexo- Ola-5	AJ295520	79 70
	Keuouansposon <i>Kexo</i> , cione <i>rex</i> o- Ola-1	AJ293318	10
	Retrotransposon Rex6, clone rex6- Xma-5	AJ293516	79
Xiphophorus maculatus	Retrotransposon Rex6, clone rex6- Xma-6	AJ293517	79
	Retrotransposon <i>Rex6</i> , clone <i>rex6</i> -Xma-2	AJ293513	79
Takifugu rubripes	Gene dmd	AJ544599	77

			Resultados e Discussão
Tetraodon nigroviridis	DNA repetido clone C0AA29L14	AJ457054	70
	Retrotransposon <i>Rex6</i>	AJ621034	69

Outro elemento transponível obtido por PCR a partir do DNA genômico de *Cichla kelberi* foi o elemento *Tc1*. A análise do produto de PCR deste elemento, a partir do *primer Tc1*, permitiu identificar uma banda de aproximadamente 450 pb visualizada por meio de eletroforese em gel de agarose (Figura 9).

Figura 9: Gel de agarose 1%, corado com brometo de etídeo, evidenciando os produtos de PCR obtidos a partir do *primer Tc1* para exemplares de *Cichla kelberi* (1-4). L- marcador de peso molecular em pares de bases.

4.3. Mapeamento físico cromossômico por hibridação *in situ* fluorescente utilizando como sondas as seqüências *Rex1*, *Rex3*, *Rex6*, *Tc1* e *Tuc*.

Os produtos das reações de PCR de Rex1, Rex3, Rex6, Tc1 e Tuc foram utilizados como sondas para o mapeamento físico nos cromossomos de *Cichla kelberi*. A hibridação *in situ* das seqüências Rex1 e Rex6 mostrou sinais abundantes nas regiões centroméricas de todos os cromossomos do cariótipo (Figura 10a e 10c, respectivamente). O elemento Rex3 apresentou-se distribuído preferencialmente na região centromérica dos pares cromossômicos, mas também em extensos segmentos intersticiais de alguns deles, ocorrendo ainda eventuais marcações teloméricas (Figura 10b). O transposon Tc1 encontrou-se distribuído predominantemente na região centromérica de todos os pares cromossômicos (Figura 10d). O elemento Tuc apresentou eventuais sinais nos centrômeros dos cromossomos e também algumas marcações intersticiais em alguns deles (Figura 10e)

Figura 10: Hibridação *in situ* fluorescente utilizando como sonda os retrotransposons Rex1(a), Rex3(b), Rex6(c), transposon Tc1(d) e Tuc (e) nos cromossomos de *Cichla kelberi*.

Os resultados apresentados são semelhantes aos obtidos para *Rex3* em *Tetraodon nigroviridis* (Fischer *et al.*, 2004) e para *Rex1* e *Rex3* em espécies de peixes antárticos da subordem Notothenioidei (Ozouf-Costaz *et al.*, 2004). Em *Tetraodon nigroviridis Rex3* localiza-se principalmente em regiões pericentroméricas e heterocromáticas, além de sinais menos intensos em regiões intersticiais. Trabalhos como o de Ozouf-Costaz *et al.* (2004), demonstraram que para a maioria das espécies da subordem Notothenoidei, o elemento *Rex3* apresentou uma distribuição homogênea e mais abundante do que *Rex1*, com sinais em todos os cromossomos e algumas regiões particulares de acúmulo. Além disto, o retrotransposon *Rex3* localizou-se também no braço longo do cromossomo Y na espécie *Chionodraco hamatus*.

Esse padrão de distribuição é diferente do observado para humanos, no qual as seqüências repetidas ocupam regiões eucromáticas, e está mais relacionado à distribuição dos elementos transponíveis observada em *Drosophila melanogaster* e *Arabidopsis thaliana* (Fischer *et al.*, 2004). Acredita-se que em peixes os retrotransposons encontram-se compartimentalizados e aglomerados nas regiões heterocromáticas dos cromossomos (Volff *et al.*, 2003). No entanto, uma alta pressão seletiva sobre estes elementos em regiões ricas em genes já foi sugerida, levando-se em consideração a capacidade destes elementos se transporem causando mutações através dos eventos de mobilização. Entretanto, o processo de mobilização dos TEs no genoma pode acarretar conseqüências muitas vezes irreversíveis, indo desde deleções, substituições e inserções de nucleotídeos até rearranjos gênicos e cromossômicos (Kidwell e Lisch, 1997).

A localização cromossômica do retrotransposon Zebulon foi estudada na espécie *Tetraodon nigroviridis*. Este elemento também apresenta sinais de hibridação em regiões heterocromáticas, nos braços curtos dos cromossomos subtelocêntricos e regiões pericentroméricas. Quando co-hibridizado com o retrotransposon *Rex3* no genoma de *T. nigroviridis*, evidenciou-se sinais dos dois elementos (*Rex3* e Zebulon) sobrepondo-se, mostrando que o sítio de hibridação é comum a ambos. Além disso, esses elementos encontram-se presentes em grande quantidade nas regiões heterocromáticas (Bouneau et al., 2006).

Grande parte das famílias de TEs descritas para teleósteos está presente no genoma dos baiacús *T. nigroviridis* e *T. rubripes* (Bouneau *et al.*, 2006). Os retrotransposons *Rex1*, *Rex3* e *Rex6* representam uma enorme quantidade e estão presentes em uma enorme diversidade no genoma dos peixes (Volff *et al.*, 2000, 2001a, 2001b). Algumas cópias de *Rex3* estão associadas a regiões codificantes, o que poderia representar um fator importante para a evolução do genoma em teleósteos causando modificação dos níveis de expressão ou especificidade dos genes vizinhos (Volff *et al.*, 1999). O retrotransposon *Rex6* possui elevada similaridade com seqüências de mesma natureza de outras espécies de teleósteos (Volff *et al.*, 2001b). Os trabalhos descritos na literatura indicam uma

forte conservação destes elementos nas regiões heterocromáticas dos cromossomos. Tal fato, sugere que estes elementos devem desempenhar papéis fundamentais nas regiões heterocromáticas, como manutenção da estrutura centromérica, contribuindo evidentemente para a evolução dos organismos eucariotos.

O padrão de acúmulo desses elementos no genoma é observado em diversos outros grupos de peixes (ver Fischer *et al.*, 2004; Ozouf-Costaz *et al.*, 2004; Bouneau *et al.*, 2006). Também a localização preferencial de retrotransposons em regiões heterocromáticas tem sido observada freqüentemente no genoma de outros grupos animais (ver Dimitri e Junakovic, 1999, Bartolomé *et al.*, 2002). As regiões heterocromáticas pobres em genes podem servir como reservatórios de elementos retrotransponíveis funcionais ou degenerados. Trabalhos como de Dimitri e Junakovic (1999) relatam que o acúmulo de elementos transponíveis na heterocromátina está relacionado com a especificidade do elemento, ou da família do elemento. Este mesmo elemento pode ser encontrado em regiões divergentes, sugerindo que isso é determinado por algum tipo de interação entre cada família de transposon e o genoma hospedeiro.

Apesar da maior parte do DNA repetido do genoma eucariótico ser composta de elementos transponíveis, os estudos citogenéticos em peixes utilizando essas seqüências encontram-se ainda em fase inicial. Os resultados já obtidos sugerem que esses elementos podem contribuir bastante para o conhecimento da evolução do genoma nesse grupo de organismos. Os resultados do nosso trabalho revelam que esses elementos podem contribuir para o conhecimento da evolução do genoma dos peixes. Estudos realizados nos mostram a variedade de elementos móveis que estão sendo descobertos, não apenas em peixes, mas em todos os eucariotos, devido ao grande número de genomas sequenciados por completo nos últimos anos. Portanto, avanços nos estudos genômicos utilizando ferramentas cromossômicas se fazem necessários sobre o genoma de peixes, principalmente para ciclídeos, uma vez que estas espécies possuem uma enorme importância tanto biológica como econômica.

Além da presença principalmente na região centromérica dos elementos estudados, sinais dispersos nos cromossomos para os elementos *Rex1*, *Rex3*, *Rex6* e *Tc1* estiveram sempre presentes, bem como dois pequenos blocos intersticiais no primeiro par do complemento cromossômico (Figura 10). Esses resultados estão em concordância com os observados por Capriglione *et al.*, (2002), os quais relatam que os estudos de hibridação *in situ* com o elemento *Tc1* na espécie *Chionodraco hamatus* (Notothenoidei), mostraram que esse elemento estava preferencialmente localizado nas regiões heterocromáticas (pericentromérica ou telomérica) e raramente interstiticais nos cromossomos.

Com base em dados prévios de bandamento C em outras espécies do gênero *Cichla* (Brinn *et al.* 2004), a distribuição de heterocromatina está restrita principalmente às regiões centroméricas e

teloméricas dos cromossomos. Os dados obtidos para a distribuição cromossômica dos elementos repetidos aqui analisados estão de acordo com os dados de citogenética clássica. No entanto, grandes segmentos cromossômicos eucromáticos, como observados para os cromossomos 2 e 3, parece conter grandes quantidades do elemento *Rex3*.

Na heterocromatina é encontrada uma enorme variedade de seqüências repetidas, mais notavelmente seqüências satélites. Infere-se que nesta região tenha poucos genes, e uma reduzida taxa de recombinação, levando ao acúmulo de seqüências repetidas. O melhor exemplo documentado acontece em *Drosophila melanogaster* onde os elementos transponíveis formam clusters proeminentes na heterocromatina. Em ramster, metade dos elementos *IAP* acumulam-se na heterocromatina, incluindo todo o cromossomo Y. Este acúmulo de seqüências repetidas pode ser observado também em milho (Dimitri e Junakovic, 1999).

A riqueza de seqüências repetidas nas regiões centroméricas e terminais dos cromossomos de *Cichla kelberi* sugerem que tais seqüências desempenham um papel importante na manutenção e evolução da estrutura cromossômica desta espécie. Seqüências repetidas estão presentes principalmente nas regiões centroméricas e teloméricas dos cromossomos e representam o principal componente das heterocromatinas da maioria das espécies de peixes estudadas.

5. CONCLUSÕES

Os resultados apresentados permitem concluir que:

1. As seqüências isoladas por digestão enzimática do DNA genômico de *Cichla kelberi* corresponde possivelmente ao segmento de um elemento retrotransponível conservado no genoma dos vertebrados.

2. Os elementos *Rex1*, *Rex3*, *Rex6* e *Tc1* estão presentes no genoma de *Cichla Kelberi* e estão organizados principalmente nas heterocromatinas centroméricas.

Réerências Bibliográficas

6. REFERÊNCIAS BIBLIOGRÁFICAS¹

ALTSCHUL, S.F.; GISH, W.; MILLER, W.; MYERS, E.W.; LIPMAN, D.J. Basic local alignment search tool. J. Mol. Biol., v.215, p.403-410, 1990.

APARÍCIO, S.; CHAPMAN, J.; STUPKA, E.; PUTNAM, N. Whole-genome shotgun assembly and analysis of the genome of *Fugu rubripes*. **Science**, v.297, p.1301-1310, 2002.

AXELROD, H.R..**The most complete colored lexicon of cichlids**. 2nd Edition. TFH Publications. NJ, USA. p.864, 1986

AZEVEDO, M.F.C.; OLIVEIRA, C.; MARTINS, C.; WASKO, A.P.; FORESTI, F. Isolation and characterization of a satellite DNA family in *Achirus lineatus* (Teleostei: Pleuronectiformes: Achiridae). **Genetica**, v.125, p.205-210, 2005.

BACHMANN, L.; RAAB, M.; SPERLICH, D. Satellite DNA and speciation. A species specific satellite DNA of *Drosophila guanche*. **Z. Zool. Syst. Evolut. Forsch.**, v.27, p. 84-93, 1989.

BARTOLOMÉ, C.; MASIDE, X.; CHARLESWORTH, B. On the abundance and distribution of transposable elements in the genome of *Drosophila melanogaster*. **Mol Biol. Evol.**, v.19, n.6, p.926-937, 2002.

BELL, G.E.; SELBY, M.J.; RUTTER, W.J. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeated sequences. **Nature**, v.295, p.31-35, 1982.

BERG, D.E.; HOWE, M.M. Mobile DNA. American Society for Microbiology, Washinghton, DC. 1989.

BIÉMONT, C.; VIEIRA, C. Genetics: Junk DNA as an evolutionary force. **Nature**, v.443, p.521-524, 2006.

BIET, E.; SUN, J.; DUTREIX, M. Conserved sequence preference in DNA binding among recombinant proteins: abnormal effect of ssDNA secondary structure. **Nucl. Acid. Res.**, v.27, p.596-600, 1999.

BERTOLLO, L.A.C.; TAKAHASHI, C.S.; MOREIRA-FILHO, O. Citotaxonomic consideration on *Hoplias lacerdae* (Pisces, Erythrinidae). **Braz. J. Genet.**, v.1, p.103-120, 1978.

BOUNEAU, L.; FISCHER, C.; OZOUF-COSTAZ, C.; FROSCHAUER, A.; JAILON, O.; COUTANCEAU, J.P.; KÖRTING, C.; WEISSENBACH, J.; BERNOT, A.; VOLFF, J.N. An active non-

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6023: informações e documentação- Referências- Elaboração. Rio de Janeiro, 2002.
 24p. BIOSIS. Serial sources for the BIOSIS preview database. Philadelphia, 1996. 468p.

LTR retrotransposon with tandem structure in the compact genome of the pufferfish *Tetraodon nigroviridis*. Genome Res., p.1-9, 2006.

BRINN, M.N.A.; PORTO, J.I.R.; FELDEBERG, E. Karyological evidence for interspecific hybridization between *Cichla monoculus* and *C. temensis* (Perciformes, Cichlidae) in the Amazon. **Hereditas**, v.141, p. 252-257, 2004.

BRITSKI, H.A. Peixes de água doce do estado de São Paulo: sistemática. In: **Poluição e Piscicultura**, Faculdade de Saúde Pública da USP- Instituto de Pesca da C.P.R.N. da Secretaria de Agricultura, p.79-108, 1972.

BROCCOLI, D.; MILLER, O.J.; MILLER, D.A. Relationship of mouse minor satellite DNA to centromere activity. **Cell. Genet.**, v.54, p.182-186, 1990.

BROW, L.Y.; BROW, S.A. Alanine tracts: the expanding story of human illness and trinucleotide repeats. **Trends Genet.**, v.20, p.51-58, 2004.

CAPY, P.; BAZIN, C.; HIGUET, D.; LANGRIN, T.. Dynamics and Evolution of Transposible Elements. Austin, TX: Springer-Verlag. 1998.

CAPRIGLIONE, T.; ODIERNA, G.; CAPUTO, V.; CANAPA, A. OLMO, E. Characterization of a Tc1-like transposon in the Antartic ice-fish, *Chionodraco hamatus*. **Gene**, v.295, p.193-198, 2002.

CHARLESWORTH, B.; SNEGOWSKI, P.; STEPHAN, W. The evolution dynamics of repetitive DNA in eukaryotes. **Nature**, v.371, p.215-220, 1994.

CHISTIAKOV, A.D.; HELLEMANS, B.; VOLCKAERT, A.M.F. Microsatelites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture, v.255, p.1-29, 2006.

COLTMAN, D.W.; WRIGHT, J.M. Can SINEs: a family of tRNA-derived retroposons specific to the superfamily Canoidea. **Nucl. Acid. Res.**, v.22, p.2726-2730, 1994.

CSINK, A.K.; HENIKOFF, S. Something from nothing: the evolution and utility of satellite repeats. **Trends Genet.**, v.14, n.5, p.200-204, 1998.

DEININGER, P.L.; MORAN, J.V.; BATZER, M.A.; KAZAZIAN, JR.H.H.. Mobile elements and mammalian genome evolution. **Current Opinion in Genetics & Development,** v.13, p.651-658, 2003.

DIMITRI, P.; JUNAKOVIC, N. Revising the selfish DNA hypothesis New evidence on accumulation of transposible elements in heterocromatin. **Trends Genet.**, v.15, p.123-124, 1999.

DOOLITTLE, W.F.; SAPIENZA, C. Selfish genes, the phenotype paradigm and genome evolution. **Nature**, v.284, p.601-603, 1980.

ELLEGREN H. Microsatelites mutations in the germline: implications for evolutionary inference. **Trends Genet.**, v.16, p.551-558, 2000.

EPPLEN, J.T.; KYAS, A.; MAULER, W. Genomic simple repetitive DNA are targets for differential binding of nuclear proteins. **FEBS Lett**., v.389, p.92-95, 1996.

FARAH, S.B. Decifrando o genoma humano. In: DNA Segredos e Mistérios, p.155-202, 2007.

FARIAS, I.P.; ORTI, G.; SAMPAIO, I.; SCHNEIDER, H.; MEYER, A.. Mitochondrial DNA phylogeny of the family Cichlidae: Monophyly and fast molecular evolution of the Neotropical assemblage. J. Mol. Evol., v.48, p.703-711, 2000.

FAWCETT, J.A.; KAWAHARA, T.; WATANABE, H.; YASUI, Y. A SINE family widely distributed in the plant Kingdom and its evolutionary history. **Plant Mol. Biol.**, v.61, n.3, p.505-514, 2006.

FLAVELL, R.B.; BENNETT, M.D.; SMITH, J.B.; SMITH, D.B. Genome size and the proportion of repeated nucleotide sequence DNA in plants. **Biochemical Genetics** v.12, p.257-269, 1974.

FELDBERG, E.; PORTO, J.I.R.; BERTOLLO, L.A.C. Chromosomal changes and adaptation of cichlid fishes during evolution. In: Val, A.L., Kapoor, B.G. **Fish adaptations.** Science Publishers, Inc. New Dehli & New York, p.285-308, 2003.

FELDBERG, E.; PORTO, J.I.R.; ALVES-BRINN, M.N.; MENDONÇA, M.N.C.; BEZAQUEM, D.C. B chromosomes in Amazonia cichlid species. **Cytogenet. Gen. Res.**, v.106, p.195-198, 2004.

FERREIRA, I.A.; MARTINS, C. Physical chromosome mapping of repetitive DNA sequences in Nile tilapia *Oreochromis niloticus*: Evidences for a differential distribution of repetitive elements in the sex chromosomes. **Micron**, p.1-8, 2008.

FESCHOTTE, C.; PRITHAM, E.J. DNA transposons and the evolution of eukaryotic genomes. **Annu. Rev. Genet.,** v.41, p.331-368, 2007.

FISHER, C.; BOUNEAU, L.; COUTANCEAU, J.P.; WEISSENBACH, J.; VOLFF, J.N.; OZOUF-COSTAZ, C. Global heterochromatic colocalization of transposable elements with minisatellites in the compact genome of the pufferfish *Tetraodon nigroviridis*. **Gene**, v.336, p.175-184, 2004.

GALETTI JR., P.M.; FORESTI, F. Evolution of the ZZ/ZW system in *Leporinus*_(Pisces, Anostomidae). Cytogenet. Cell Genet., v.43, p.43-46, 1986.

GALETTI JR., P.M.; MARTINS, C. Contribuição da hibridação *in situ* para o conhecimento dos cromossomos dos peixes. In: **FISH: Conceitos e Aplicações na Citogenética.** Ed. M.Guerra. Editora da SBG. p.61-88, 2004.

HAAF, T.; MATER, A.G.; WIENBERG, J.; WARD, D.C. Presence and abundance of CENP-B box sequences in great apes subsets of primate-specific α -satellite DNA. J. Mol. Evol., v.41, p.487-491, 1995.

HALL, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser., v.41, p.95-98, 1999.

HAN, K.; KONKEL, M.K.; XING, J.; WANG, H.; LEE, J.; MEYER, T.J.; HUANG, C.T.; SANDIFER, E.; HERBERT, K.; BARNES, E.W.; HUBLEY, R.; MILLER, W.; ARIAN, F.A.; ULLMER, S.B.; BATZER, M.A.. Mobile DNA in old world monkeys: A glimpse through the rhesus macaque genome. **Science** v.316, p.238-240, 2007.

HARRIS, A.S.; WRIGHT, J.M. Nucleotide sequence and genomic organization of cichlids fish minisatelites. **Genome**, v.38, p.177-184, 1995.

HARVEY, S.C.; BOONPHAKDEE, C.; CAMPOS-RAMOS, R.; EZAZ, M.T.; GRIFFIN, D.K.; BROMAGE, N.R.; PENMAN, D.J. Analysis of repetitive DNA sequences in the sex chromosomes of *Oreochromis niloticus*. Cytogenet. Gen. Res., v.101, p.314-319, 2003.

JEFFREYS, A.J.; WILSON, V.; THEIN, S.L. Hypervariable minisatellite regions in human DNA. **Nature**, v.314, p.67-74, 1985.

KAPITONOV, V.V.; JURKA, J. Self-synthesizing DNA transposons in eukariotes. **Proc. Natl. Acad.** Sci., v.103, p.4540-4545, 2006.

KAZAZIAN, H.H.JR. Mobile elements: drivers of genome evolution. Science, v.12, p.1626-1632, 2004.

KIDWELL, M.G.; LISCH, D. Transposable elements as sources of variation in animals and plants. **Proc. Natl. Acad. Sci.**, v.94, p.7704-7711, 1997.

KIDWELL, M.G. Transposible elements and the evolution of genome size in eukaryotes. **Genetica**, v.115, p.49-63, 2002.

KOCHER, T.D. Adaptive evolution and explosive speciation: the cichlid fish model. **Nature**, v.5, p.288-298, 2004.

KULLANDER, S.O. A phylogeny and classification of the South American Cichlidae (Teleostei: Perciformes) In: MALABARBA, L.R.; REIS, R.E.; VARI, R.P.; LUCENA, Z.M.; LUCENA, C.A.S. Phylogeny and Classification of Neotropical Fishes, Part 5. EDIPUCRS. RS, Brasil. p.461-498, 1998.

KULLANDER, S.O.; FERREIRA, E.J.G. A review of the South American cichlid genus *Cichla*, with descriptions of nine new species (Teleostei: Cichlidae). **Ichthyological Exploration of Freshwaters**, v.17, n.4, p.289-398, 2006.

KUMAR, A.; BENNETZEN, J.L. Plant retrotransposons. Annu. Rev. Genet. v.33, p.479-532, 1999.

KUMAR, S.; TAMURA, K.; NEI, M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. **Briefings in Bioinformatics** v.5, p.150-163, 2004.

LEWIN, B. Retrovirus and retroposons. In: Genes VIII. Carlson G. Ed: Pearson Prentice Hall. NJ. p.493-509, 2004.

LI, W.H.. Molecular Evolution. Sinauer Associates Sunderland, p.177-213, 1997.

LI, Y.C.; KORD, A.B.; FAHIMA, T.; BERLES, A.; NERO, E.. Microsatellites: genomic distribution, putative functions and mutation mechanisms: a review. **Molecular Ecology**, v.11, p.2453-2465, 2002.

LI, Y.X.; KIRBY, M.L. Coordinated and conserved expression of alphoid repeat and alphoid repeattagged coding sequence. **Devel. Dyn**., v.228, p.72-81, 2003.

LITT, M.; LUTY, J.A. A hypervariable microsatelite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. v.44, 397-401, 1989.

LIU, Z.; LI, P.; KOCABAS, A.; KARSI, A.; JU, Z. Microsatelite containing genes from the channel catfish brain: evidence of trinucleotide repeat expansion in the coding region of nucleotide excision repair gene RAD23B. **Biochem. Biophys. Res. Commum** v.289, p.317-324, 2001.

MADSEN, C.S.; BROOKS, J.E.; KLOET, E.; KLOET, S.R. Sequence conservation of an avian centromeric repeated DNA component. **Genome**, v.37, p.351-355, 1994.

MARTIN, S.L.; CRUCEANU, M.; BRANCIFORTE, D.; WAI-LUN, L.I.P.; KWOK, S.C.; HODGES, R.S.; WILLIAMS, M.C. LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J. Mol. Biol., v.348, p.549-561, 2005.

MARTINS, C.; GALETTI JR., P.M. Two 5S rDNA arrays in Neotropical fish species: Is it a general rule for fishes? **Genetica**, v.111, p.439-446, 2001.

MARTINS, C.; GALLETI JR., P.M.. Contribuição da hibridização *in situ* para o conhecimento dos cromossomos de peixes. In: **FISH- conceitos e aplicações na citogenética**. Ed. Guerra M. Sociedade Brasileira de Genética. p.61-88, 2004.

MARTINS, C.; WASKO, A.P. Organization and evolution of 5S ribosomal DNA in the fish genome. In: **Focus on Genome Research** (Ed. CR Williams) Nova Science Publishers, Hauppauge, NY, USA. p.335-363, 2004.

MARTINS, C. Chromosomes and repetitive DNAs: a contribution to the knowledge of fish genome. In: **Fish Cytogenetics**. Eds: PISANO, E; OZOUF-COSTAZ, C; FORESTI, F.; KAPOOR BG. Science Publisher, Inc., USA. 2006.

MARTINS, C.; FERREIRA, I.A.; OLIVEIRA, C.; FORESTI, F.; GALETTI JR., P.M. A tandemly repetitive centromeric DNA sequence of the fish *Hoplias malabaricus* (Characiformes: Erythrinidae) is derived from 5S rDNA. **Genetica**, v.127, p.133-141, 2006.

MADSEN, C.S.; BROOKS, J.E.; KLOET, E.; KLOET, S.R. Sequence conservation of an avian centromeric repeated DNA component. **Genome,** v.37, p.351-355, 1994.

METZGAR, D.; BYTOF, J.; WILLS, C. Selection against frameshift mutations limits microsatelite expansion in coding DNA. **Genome Res.**, v.10, p.72-80, 2000.

MIKLOS, G.L.G. Localized highly repetitive DNA sequences in vertebrate and invertebrate genomes. **Mol. Evol. Genet.**, p.241-321, 1985.

MISKEY, C.; IZSVAK, Z.; KAWAKAMI, K.; IVICS, Z. DNA transposons in vertebrate functional genomics. **Cell. Mol. Life Sci.**, v.62, p.629-641, 2005.

MORESCALCHI, A.; CAPRIGLIONE, T.; LANNA, R.; MORESCACLCHI, M.A.; ODIERNA, G.; OLMO, E. Genome structure in notothenioid fish from the Ross Sea. **Proceedings of the Third Meeting on Antarctic Biology** p.365-379, 1996.

MORGANTE, M.; JURMAN, I.; SHI, L.; ZHU, T.; KEIM, P.; RAFALSKI, J.A.. The STR120 satellite DNA of soybean: organization, evolution and chromosomal specificity. **Chromosome Res.**, v.5, p.363-373, 1997.

MOYLE, P.B.; CECH-JUNIOR, J.J. Fishes: an introduction to inchthyology. 4^a edição. Upper Sadlle River: Prentice-Hall. 2000.

MURRAY, A.M. The fossil record and biogeography of the Cichlidae (Actinopterygii, Labroidei). **Biological Journal of the Linnean Society,**v.74, p.517-532, 2001.

NASCIMENTO, F.L.; CATELA, A.C.; MORAES, A.S. Distribuição espacial do tucunaré, *Cichla* sp. (Pisces, Cichlidae), peixe amazônico introduzido no Pantanal, Brasil.- Bol. Pesq. Desen. EMBRAPA Pantanal v.24, p.1-15, 2001.

NELSON, J.S. Fishes of the world. 4rd Edition. John Wiley & Sons Inc. NY, USA. 601p, 2006.

NOLETO, R.B.; VICARI, M.R.; CIPRIANO, R.R.; ARTONI, R.F.; CESTARI, M.M.. Physical mapping of 5S and 45S rDNA loci in pufferfishes (Tetraodontiformes). **Genetica**, v.130, p.133-138, 2007.

NOWAK, R. Mining treasures from "junk DNA". Science, v.263, p.608-610, 1994.

O' RELLY, P.; WRIGHT, J.M. The evolving technology of DNA fingerprint and its application to fisheries and aquaculture. J. Fish Biol. v.47, p.29-55, 1985.

OZOUF-COSTAZ, C.; BRANDT, J.; KORTING, C.; PISANO, E.; BONILLO, C.; COUTANCEAU, J-P.; J-N. VOLFF. Genome dynamics and chromosomal localization of the non-LTR retrotransposons *Rex1* and *Rex3* in Antartic fish. **Antartic Science.** v.16, n.1, p.51-57, 2004.

PAGE, R.D.M.; HOLMES, E.C. Molecular evolution: a phylogenetic approach. **Blackwell Science.** 1998.

PARISE-MALTEMPI, P.P.; MARTINS, C.; OLIVEIRA, C.; FORESTI, F. Identification of a new repetitive element in the sex chromosomes of *Leporinus elongatus* (Teleostei: Characiformes: Anostomidae): new insights into the sex chromosomes of *Leporinus*. Cytogenet. Gen. Res., v.116, n.3, p.218-223, 2007.

PINKEL, D.; STRAUME, T.; GRAY, J.W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. **Proc. Nat. Acad. Sc.** v.83, p.2934-2938, 1986.

POCWIERZ-KOTUS, A.; BURZYNSKI, A.; WENNE, R. Family of Tc1-like elements from fish genomes and horizontal transfer. **Gene** v.390, p.243-251, 2007.

PONS, J.; BRUVO, B.; JUAN, C.; PETITPIERRE, E.; PLOHL, M.; UGARKOVIC, D. Conservation of satellite DNA in species of the genus *Pimelia* (Tenebrionidae, Coleoptera). **Gene**, v.205, p.183-190, 1997.

ROJAS, A.A.; VAZQUEZ-TELLO, A.; FERBEYRE, G.; VENANZETTI, F.; BACHMANN, L.; PAQUIN, B.; SBORDONI, V.; CEDERGREN R.. Hammerhead-mediated processing of satellite pDo500 family transcripts from *Dolichopoda*_cave crickets. **Nucleic Acids Res,** v.28, n.20, p.4037-4043, 2000.

SAMBROOK, J.; MANIATIS, T.; FRITSCH, E.F. **Molecular cloning. A laboratory manual**. 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. 1989.

SAMBROOK, J.; RUSSEL, D.W. Molecular cloning. A laboratory manual. 3nd edition. Cold Spring Harbor Laboratory Press, New York. 2001.

SCHUELER, M.G.; HIGGINS, A.W.; RUDD, M.K.; GUSTASHA,W.K.; WILLARD, H. Genomic and genetic definition of a functional human centromere. **Science**, v.294, p.109-115, 2001.

SLAMOVITS, C.H.; COOK, J.A.; LESSA, E.P.; ROSSI, S.M. Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South America Tuco-tucos (genus *Ctenomys*, Rodentia: Octodontinae): a phylogenetic approach. **Mol. Biol. Evol.**, v.9, p.1708-1719, 2001.

SMIT, A.F.A. The origin of interspersed repeats in the human genome. **Current Opinion in Genetics** and **Development**, v.6, p.743-748, 1996.

STEPHAN, M.F.; CHO, S. Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. **Genetics**, v.136, p.333-341, 1994.

STERBA G. Freshwater fishes of the world. T.F.H. Publications, USA 1-2: 877. 1973.

TAUTZ, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. **Nucleic Acids Res.** v.17, p.6463-6471, 1989.

THE GENOME INTERNATIONAL SEQUENCING CONSORTIUM. Initial sequencing and analysis of the human genome. **Nature**, v.409, p.860-921, 2001.

THERMAN, E.; SUSMAN, M.. Cromosomas humanos: estructura, comportamiento y efectos. 3^a edição. **Sociedade Brasileira de Genética**, Ribeirão Preto-SP, Brasil. 1996.

TREWAVAS, E. Tilapiine fishes of the genera *Sarotherodon, Oreochromis* and *Danakilia*. London. British Museum (Natural History). 1983.

TOTH, G.; GASPARI, Z.; JURKA, J. Microssatélites in different eukaryotic genomes: survey and analysis. **Genome Res.**, v.10, p.967-981, 2000.

THOMPSON, J.D.; HIGGINS, D.G.; GIBSON, T.J. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting positions- specific gap penalties and weight matrix choice. **Nucleic. Acids Res.**, v.22, p.4673-4680, 1994.

VOLOBOUEV, V.; VOGT, N.; VIEGAS-PÉRQUIGNOT, E.;MALFOY, B.; DUTRILLAUX, B. Characterization and chromosomal location of two repeated DNAs in three *Gerbillus* species. **Chromosoma**, v.104, p.252-259, 1995.

VOLFF, J-N.; KORTING, C.; SWEENEY, K.; SCHARTL, M. The non-LTR retrotransposon *Rex3* from the fish *Xiphophorus* is widespread among teleosts. **Mol. Biol. Evol.**, v.16, p.1427–1438, 1999.

VOLFF, J-N.; KORTING, C.; SCHARTL, M. Multiple lineages of the non-LTR retrotransposon *Rex1* with varying success in invading fish genomes. **Mol. Biol. Evol.** v.17, p.1673–1684, 2000.

VOLFF, J-N.; KÖRTING, C.; FROSCHAUER, A.; SWEENEY, K.; SCHARTL, M. Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J. Mol. Evol., v.52, p.351–360, 2001a.

VOLFF, J-N.; HORNUNG, U.; SCHARTL, M. Fish retroposons related to the *Penelope* element of *Drosophila virilis* define a new group of retrotransposable elements. **Mol. Genet. Genomics**, v.265, p.711–720, 2001b.

VOLFF, J-N.; KÖRTING, C.; FROSCHAUER, A.; SWEENEY, K.; SCHARTL, M. Non-LTR retrotransposons encoding a restriction enzyme-like endonuclease in vertebrates. J. Mol. Evol., v.52, p.351-360, 2001c.

VOLFF, J-N.; BOUNEAU, L.; OZOUF-COSTAZ, C.; FISCHER, C. Diversity of retrotransposable elements in compact pufferfish genomes. **Trends in Genetica**, v.19, p.674-678, 2003.

VOLFF, J-N. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. **BioEssays**, v.28, p.913-922, 2006.

XIA, X.; XIE, Z. DAMBE: Data analysis in molecular biology and evolution. J. Heredity, v.92, p.371-373, 2001.

WALSH, J.B. Genome Evolution: Overview. Enciclopedia of life sciences. . 2001.

WEBER J.L.; MAY P.E. Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. **Am. J. Hum. Genet.**, v.44, n.3, p.388-396, 1989.

WESSLER, S.R. Transposible elements and the evolution of eukaryotic genomes. **Proceedings of the National Academy of Sciences of the United States of America** v.103, n.47, p.17600-17601, 2006.

WILLARD, H.F. Evolution and function of alpha satellite DNA. Pathol. Biol., v.49: 390. 2001.

WRIGHT, J.M. DNA fingerprint of fishes. In: The biochemistry and molecular biology of fishes. Elsevier Press, Amsterdam, p.57-91, 1993.

7. ANEXOS

ANEXO I: Alinhamento da seqüência *Rex1* de *Cichla kelberi* com as das demais espécies de ciclídeos da tabela 11, incluindo-se os gaps.

	10	20	30	40	50	60
			- -	·	-	
Rex1	CCTCTATCAC	ATTATTTCTGAGG	GACAAGCI	GGAGCTGTC	CAGGAGTGGACC	ACCACATGTCC
C.labridensCil-2	-ATCCAGC-C	AGGACTTGTGAGG	GACAAGTO	TGAGTTGTC	CAGGAGTGGAC	ACCACATGTCC
C.labridensCil-3	-ATCCAGC-C	AGGACTTCTGAGG	GACAAGTO	GGAGTTGTC	CAGGAGTGGAC	ACCACATGTCC
C.labridensCil-1	-ATCCAGC-C	AAGACTTCTGAGG	GACAAGCI	GGAGCTGTC	CAGGAGTGAACC	ACCACATGTCC
C.labridensCil-4	-ATCCAGC-C	AGGACTTCTGAGG	GACAAGTI	GGAGTTGTC	CAGGAGTGGAC	ACCACATGTCC
O.niloticusOrn-5	-ATCCAGC-C	ACGACTTCTGAGG	GACAAGCI	AGAGCTATC	CGGGAGTGGAC	ACCACATGTCC
0.niloticusOrn-1	-ATCCAGC-C	ACGACTTCTGAGA	GACAAGCI	GGAGCTATC	CGGGAGTGGAC	CACCACATGTCC
0.niloticusOrn-4	-ATCCAGC-C	ACGACTTCTGAGA	GACAAGCI	GGAGCTATC	CGGGAGTGGAC	CACCACATGTCC
H.bimaculatusHeb-1	-ATCCAGC-C	ACAACTCCTGAGA	GACAAGCI	GGAGCTATC	CAGGAGTTGACC	CACCACATGTCC
H.bimaculatusHeb-2	-ATCCAGC-C	ACGACTCCTGAGA	GACAAGCI	GGAGCTATC	CCGGAGTGGAC	CACCACATGTCC
H.bimaculatusHeb-4	-ATCCAGC-C	ACGACTCCTGAGA	GACAAGCI	GGAGCTATC	CCGGAGTGGAC	CACCACATGTCC
H.bimaculatusHeb-5	-ATCCAGC-C	ACAACTCCTGAGA	GACAAGCI	GGAGCTATC	CAGGAGTGGAC	CACCACATGTCC
	** * * *	* * * ****	* * * * * *	*** * **	***** **	* * * * * * * * * * *
	70	80	90	100	110	120
				·-		
Rex1	CAGTGGATAC	TGGACTACCTCAC	TGG-CGCC	CACAGTAT	GTGAG-ACACAC	GGCTGTGTCTC
C.labridensCil-2	CAGTGGATAC	TGGACTACCTCAC	TGACCGCC	CACAGTACO	TGAGGACACAG	GGCTGTGTCTC
C.labridensCil-3	CAGTGGATAC	TGGACTACCTCAC	TGACCGCC	CACAGTACO	TGAGGTCACAG	GGCTGTGTCTC
C.labridensCil-1	CACTGGATAC	TGGACTACCTCAC	TGACTGCC	CACAGTACO	TGAGGACACAG	GGCTGCGTCTC
C.labridensCil-4	CAGTGGATAC	TGGACTGCCTCAC	TGACCGCC	CACAGTACO	TGAGGACACAG	GGCTGTGTCTC
0.niloticus0rn-5	CAGTGGATAC	TGGACTACCTCAC	AGAACGCC	CACAGTATO	TGAGGTCACAG	GGCTGTGTCTC
0.niloticus0rn-1	CAGTGGATAC	TGGACTACCTCAC	AGAACGTC	CACAGTATO	TGAGGTCACAG	GGCTGTGTCTC
0.niloticus0rn-4	TAGTGGATAC	TGGACTACCTCAC	AGAACGTC	CACAGTATC	TGAGGTCACAG	GGCTGTGTCTC
H.bimaculatusHeb-1	CATTGGATAT	TGGACTACCTCAC	AGAACGTC	CACAGTATC	TGAGGTCACAG	ACCTGTGTCTC
H bimaculatusHeb-2	CATTGGATAT	TGGACTACCTCAC	AGAACGTO	CACAGTATC	TGAGGTCACAC	ACCTGTGTCTC
H bimaculatusHeb-4	CATTGGATAT	TGGACTACCTCAC	AGAACGTT	CACAGTATC	TGAGGACACACA	ACCTGTGTCTC
H bimaculatusHeb-5	CACTCCATAT	TGGACTACCTCAC	AGAACGII	'CACAGTATC	TGAGGTCACAC	
ii.bimacuiacusiicb 5	* *****	***** *****	* *	*******	**** *****	* *** *****
	130	140	150	160	170	180
	1					
Port1						
C labridengCil_2	TCACAGGCIG	GICIGCA-IACIG	GGGCCC-C	CAGGGAACI	CTCCTCCCACC	CTTCCICIICA
C labridonaCil 2	TCACAGGCIC		GGGCCCCF	CAGGGAACI	GIGCIGGCACC	GIICCICIICA
C. labridanaGil 1	TGACAGGCIG		GGGCCCCA			
C. labridanaGil 4	TGACAGGCIG		GGGCCCCF			
C. Tabridenschi-4	IGACAGGCIG		GGGCCCCA	CAGGGAACI	GIGCIGGCACC	GIICCICIICA
0.niloticusorn-5	TGACACGCTG	GICIGCAGIACGG	GAGCCCCA	CAGGGAACI	GIGCIGGCACC	GITCCTCTTCA
0.niloticus0rn-1	TGACACGCTG	GTCTGCAGTACGG	GGGCCC-A	CAGGGAACI	GTGCTGGCACC	GTTCCTCTTCA
0.niloticus0rn-4	TGATACACTO	GTCTGCAGTACAG	GGGCCCCA	CAGGGAACI	GTGGTGGCACC	GTTCCTCTTCA
H.bimaculatusHeb-1	TGACACGCTG	GTCTGCAGTACGG	GGGCCCCA	CAGGGAACI	GTGCTGGCACO	GTTCCTCTTCA
H.bimaculatusHeb-2	TGACACGCTG	GTCTGCAGTACAG	GGGCCCCA	CAGGGAACI	IGTGCTGACACI	GTTCCTCTTCA
H.bimaculatusHeb-4	TGACACGCTO	GTCTGCAGTACAG	GGGCCCCA	CAGGGAACI	GTGCTGGCACI	'GTTCCTCTTCA
H.bimaculatusHeb-5	TGACACGCTG	GTCTGCAGTACGG	GGGCCCCA	CAGGGAACI	GTGCTGGCACO	GTTTCTCTTCA
	* * ***	*** *** *** *	* ****	*******	*** ** * *	** ** ****
	190	200 21	0	220	230	240 2
	-			· -		
Rex1	CC-TCTACAC	TGCATACTTCTCC	ATCAACTC	CCCAC-CTC	GCATCTACAGA	AATTCTCTGAC
C.labridensCil-2	CCCTCTACAC	TGCAGACTTCTCC	ATCAACTC	ACCACGCTO	GCCATCTGCAGA	AGTTCTCTGAC
C.labridensCil-3	CCCTCTACAC	TGCAGACTTCTCC	ATCAACTC	CCCACGCTC	GCCATCTGCAGA	AGTTCTCTGAC
C.labridensCil-1	CCCTCTACAC	TGCAGACTTCTCC	ATCAACTC	CCCACGCTC	GCCATCTGCAGA	CGTTCTCTGAC
C.labridensCil-4	CCCTCTACAC	TGCAGACTTCTCC	ATCAACTC	ACCACGCTO	GCCATCTGCAGA	AGTTCTCTGAC
O.niloticusOrn-5	CCCTCTACAC	TGCAGACTTCTCC	ATCAACTC	CCCACGCTO	GCCACCTACAGA	AGTTCTCTGAC
0.niloticusOrn-1	CCCTCTACAC	TGCAGACTTCTCC	ATCAACTC	CCCACGCTO	GCCACCTACAGA	AGTTCTCTGAC
0.niloticusOrn-4	CCCTCTACAC	TGCAGACTTCTCC	ATCAACTC	CCCACGCTO	GCCACCTACAGA	AGTTCTCTGAC
H.bimaculatusHeb-1	CCCTCTACAC	CGCAGACTTCTCC	ATCAACTO	CCCACGCTO	CCACCTACAGA	AGTTCTCTGAC
H.bimaculatusHeb-2	CCCTCTACAC	TGCAGAATTCTTC	ATCAACTC	CCCACGCT	CCACCTACAGA	AGTCCTCTGAC
H.bimaculatusHeb-4	CCCTCTACAC	TGCAGACTTCTTC	ATCAACTC	CCCACGCTC	CCACCTACAGA	AGTTCTCTGAC
H.bimaculatusHeb-5	CCCTCTACAC	TGCAGACTTCTCC	ATCAACTO	CCCACGCTC	CCACCCACAGA	AGTTCTCTGAC
	** ******	*** * **** *	******	**** ***	** * ****	* ******
	50 2	60 270	20	10 7	90 30	10 310
Pov1						
C labridenccil 2	GACICIGCCA			AGGAIGACI		CAGIGGACICA
C labridenccil 2	CACICIGCCC	TAGIIGGUUICAI	CACAGGIG CACAGGIG	AGGACGACI		CACACCACTCA
C. Tant Inclise 11-2	UNCICIGUUA	TAGT T GGCC T CAT	CACAGGIG	IJAI IACOAL	COGAGIACAGA	AJI JADDADADA

C_labridensCil-1	GACTCTGCCGTAGTTGGCCTCATCACAGATGACGCACGCA
C labridengCil-4	
0 nilotiqua0rn E	
0.niloticus0in-5	
0.niloticus0rn-1	
U.himamalatusUrh-4	GACTETIGUEATAGTEGGEETICATEACAGGTGAGGACGAETCAGAGCAACAGTGGACTET
H.DIMACULATUSHED-1	GACTCTGCCATAGTCATCCTCATCACAGGTGAGGACGACTCAGAGTACAGACAG
H.bimaculatusHeb-2	GACTCTGCCATAGTCGGCCTCATCACAGGTGAGGACGACTCAGAGTACAGAGAGTGGACTCT
H.bimaculatusHeb-4	GACTCTGCCATAGTCGGCCTCATCACAGG-GAGGACGACTCAGAGTACAGACAGTGGACTCT
H.bimaculatusHeb-5	GACTCTGCCATAGTCAGCCTCATCACAGGTGAGGACGACTCAGAGTACAGACAG
	***** ** ** * **** **** **** ** ** *** *** **
	320 330 340 350 360 370
Rex1	GGACTTTGTGGACTGGTGCCAGCGGAACCACCTCCTGATCAATGCTGCTTAAAC - AAGGAGC
C.labridensCil-2	GGACTTTGTGGGATGGTGCCAGCGGAACCACCTCCTGATCAACGGTGCTAAAACCAAGGAGC
C_labridensCil-3	GGACTTTGTGAACTGGTGCCAGCGGAACCACCTCCTGATCAATGCTGCTAAAACCAAGGAGC
C labridengCil-1	
C labridonaCil 4	
C. Tabridenschi-4	
0.niloticusorn-5	GGACTTTTGTGGGCTGGTGCCAGCAGGAACCACCTGCTGATCAACGCCGGGAAAACCAAGGAGT
0.niloticus0rn-1	GGACTTTGTTGACTGGTGTCAGCAGGAACCACCTGCTGATCAACACCGGGAAAACCAAGGAGT
0.niloticusOrn-4	GGACTTTGTGGACTGGTGCCAGCAGAACCACCTGCTGATCAACGCCGGGAAAACCAAGGAGT
H.bimaculatusHeb-1	GGACTTTGTGGACTGGTGCCAGCAGAACCACCTGCTGATCAATGTCGGGAAAACCAAGGAGT
H.bimaculatusHeb-2	GGACTTTGTGGACTGGTGCCAGCAGAACCACCTGCTGATCAACACCGGGAAAACCAAGGAGT
H.bimaculatusHeb-4	GGACTTTGTGGACTGGTGCCAGCAGAACCACCTGCTGATCAACACCGGGAAAACCAAGGAGT
H.bimaculatusHeb-5	GGACTTTGTGGACTGGTGCCAGCAGCAGCACCACCTGCTGATCAACGGCGGGAAAACCAAGGAGT
	******* ***** **** ********************
	380 390 400 410 420 430
Derr1	
Rexi	I I GIGGI GGA I I I CCGCAGGI GCAGACCCCAACACAC I GAACCGGI I AAACAI I CAGGG-AGI
C.labridensCil-2	TGGTGGTGGATTTCCGCAAGCGCAGACCCACCACACTGGCACCGGTGAACATCCAGGG-ACT
C.labridensCil-3	TGGTGGTGGATTTCCACAGGCGCAGACCCACCACCACCGGTGAACATCTAGGG-AGT
C.labridensCil-1	TGGTGGTGGATTTCCGCAGGCGTGGACCCACCACCACTGACACCGGTGTACATCCAGGG-AGT
C.labridensCil-4	TGGTGGTGGATTTCCGCAAGCGCAGACCCACCACCACGGCGCGGTGAACATCCAGGG-AGT
0.niloticusOrn-5	TGGTGGTGGACTTCCGGAGACGCAGACCCACCACCACCACGGTGAACATCCAGGG-AGT
0.niloticusOrn-1	TGGTGGTGGACTTCCGGAGACGCAGACCCACCACACTGACACCGGTGAACATCCAGGG-AGT
0 niloticus0rn-4	TGGTGGTGGACTTCCGGAGACGCAGACCCACACTGACACCGGTGAACATCCAGGG-AGT
H himagulatugHeb-1	
II.bimaculatusIIeb-1	
H.DIMACUIALUSHED-2	
H.bimaculatusHeb-4	TGFTGGTGGATTTCCGGAGACGCAGACCCACCACTGACACCAGTGAACATCCAGGG-AGT
H.bimaculatusHeb-5	TGGTGGTGGATTTCCGGAGACACAGACCCACCACCACTGACACCAGCTAACATCCAGGG-AGT
	* ****** * **** * ***** * ****** * ****
	440 450 460 470 480 490
Rex1	GGATATTTGAGATAGTGGACTCTTATAAGTAC-TGGGTGTTCACCTGAACAATAAAATGGAC
C.labridensCil-2	GG-ACATTGAGATAGTGGACTCTTGTAAGTACCTGGGTGTTCACCTGAACAATAAACTGGAC
C.labridensCil-3	GG-ACATTGAGATAGTGGACACTTTATAAGTACCTGGGTGTTCACCTGAACAATAAACTGGAC
C labridensCil-1	GG-ACATTGAGATAGTGGACTCTTATAAGTACCTGGGTGTTCACCTGAACAATAAACTGGAC
C labridensCil-4	
C. Tabli Idenscii - 4	
0.nileticus0in-3	
0.niloticusOrn-1	GG-ACATTGAGATAGTGGACTCTTATAGGTACCTGGGTGTTCACCTGAATAATAAACTGGAC
0.niloticusOrn-4	GG-ACATTGAGATAGTGGACTCTTATAGGTACCTGGGTGTTCACCTGAATAATAAACTGGAC
H.bimaculatusHeb-1	GG-ACATTGAGATAGTGGACTCTTATAAGTACCTGGGTGTTCACCTAAATAATAAGCTAGAC
H.bimaculatusHeb-2	GG-ACATTGAGATAGTGGACTCTTATAAGTACCTGGGTGTTCACCTAAATAATAAGCTAGAC
H.bimaculatusHeb-4	GG-ACATTGAGATGATGGACTCTTATAAGTACCTGGGTGTTCACCTAAATAATAAGCTAGAC
H.bimaculatusHeb-5	GG-ACATTGAGATAGTGGACTCTTATAGGTACCTGGGTGTTCACCTAAATAATAAGCTAGAC
	** ****** ***** *** ** **** ***********
	510 520 530 540
Rexl	TGGACTCACAACCTTTCCTTACAGAGGGTCAGACCATTTTTTGGGAGGGA
C.labridensCil-2	TGGACTCA-ATCACTGATGCGCTCTACAGGAAGG-TC-
C.labridensCil-3	TGACTCGCAACACTGATGCGCTTTACAGGAAGG-TC-
C.labridensCil-1	TGGACTCACAACACTGATGCGCTTTACAGGAAGG-TC-
C.labridensCil-4	TGGACTCATAACACTGATGCGCTCTACAGGAAGGGTC-

TGG-----TT-ACAGGAAGG-TC-

TGG-----AGCCACAACACTGATGCTC-----TTTACAGGAAGGGTC-

** ** * *

** ***

O.niloticusOrn-4 TGG------AGCCACAACACTGATGCTC-----TTTACAGGAAGG-TC-H.bimaculatusHeb-1 TGG------AGCCACAACACTGATGCTC-----TTTACAGGAAGGTTC-H.bimaculatusHeb-2 TGG------AGCCACAGCACTGATGCTC-----GTTACAGGAAGGGTC-H.bimaculatusHeb-4 TGG------AGCCACAACACTGATGCTC-----TTTACAGGAAGGTTC-H.bimaculatusHeb-5 TGG------AGCCACAACACTGATGCTC-----GTTACAGGAAGGGTC-

0.niloticusOrn-5

O.niloticusOrn-1 O.niloticusOrn-4

* *

ANEXO II: Alinhamento da seqüência *Rex3* de *C. kelberi* com as das demais espécies de ciclídeos da tabela 12, incluindo-se os gaps.

	10	20	30	40	50	60
		-			-	
Rex3	TTTTTTTTTTTTT	IGGGAGTCAA	CACCACAGGAA	AGAGTCCGACT	TATTGCCGG	CAATACGGAC
0.niloticusOre3	CCCATCTT	TAAGAAGGGA	GACCGGAGGGI	GTGTTCCAACT	ACAGGGGG-	FCACACTCCT
0.niloticusOre5	CCCATCTT	TAAGAAGGGA	GACCAGAGGGI	GTGTTCCAACT	ACAGGGGGA	FCACACTCCT
0.niloticusOrel	CCCATCTT	TAAGAAGGGA	GACCGGAGGGI	GTGTTCCAACT	ACAGGGGGA	FCACACTCCT
0.niloticusOre4	CCCATCTT	TAAGAAGGGG	GACCGGACGGI	GTGTTCCAACT	ATAGGGGGA	FCACACTCCT
C.labridensCic4	CCCATCTT	I'AAGAAGGGA	GACCGGAGGG'I	GTGCTCCAACT	'I'I'CGGGGGGA'	I'CACAC'I'AC'I'
C.labridenscicz	CCCATCTT	PAAGAAGGGA	GACCGGAGGGI	GIGCICCAACI	- TTCGGGGGA	reacacreer
	70	80	90	100	110	120
		-	-	-		
Rex3	CAAGCTCTCGC	IGCGGTTGTA	CAGGGACTGAA	TGGCCCGCAAC	AATGGGCCA	JACACCCCAT
0.niloticusOre3	CAGCCTCCCTG	GAAAGTCTA	TGCCAGGGTGC	TGGAAAGGAG-	AGTTCGTCC	GTTAGTCGAA
0.niloticusOre5	CAGCCTCCCTG	GGAAAGTCTA	TGCCAGGGTGC	TGGAAAGGAG-	AGTTCGTCC	GTTAGTCGAA
0.niloticusOre1	CA-CCTCCCTG	GGAAAGTCTA	TGCCAGGGTGC	CTGGAAAGGAG-	AGTTCGTCC	GTTAGTCGAA
0.niloticusOre4	CAGCCTCCCTG	GGAAAGTCTA	TGCCAGGGTGC	TGGAAAGGAG-	AGTTCGTCC	GCTAGTCGAA
C.labridensCic4	CAGCCTCCCCG	JTAAGGTCTA	TGCCAGGGTGC	TGGAAAGGAG-	GGTGCGTCCC	GTTAGTCGAA
C.labridensCic2	CAGTCTCCCCG	GTAAGGTGTA	TGCCAAGGTGC	TGGAAAGGAG-	GGTGCGTCCC	GTTAGTCGAA
	** *** *	* **		*** * *	* * * *	* * * *
	1.2.0	1.4.0	1 5 0	1.60	1 8 0	100
	130	140	150	100	1/0	180
Derr?						
0 niloticus0re3	CCTCCCATACA	CACCICCCA	TCCCCTTTTCC		GICGAAIG=	CCACCTCTT
0 niloticus0re5	CCTCCCATACA	CACCAACAA	TGCGGTTTTCC	TCCTGGTCGCG	GAACACICOP	ACCAGCTCTT
0.niloticusOrel	CCTCGGATACA	GAGGAACAA	TGCGGTTTTTC	TCCTGGTCGCG	GAACACTGGZ	ACCAGCTCTT
0.niloticusOre4	CCTCGGATACA	GAGGAACAA	TGCGGTTTTCC	TCCTGGTCACG	GAACACTGG	ACCAGCTCTT
C.labridensCic4	CCTCGGATTCA	GGAAGAACAA	TGCGGTTTTCC	TCCTGGTCGTG	GAACGCTGG	ACCAGCTCTT
C.labridensCic2	CCTCGGATCCA	GGAGGAACAA	TGCGGTTTCCG	TCCTGGTCGTG	GAATGCTGG	ACCAGCTCTT
	*** ***	* * * *	* * * *	* ** *	* **	** ***
	190 :	200	210 2	20 23	0 24	10 2
						-
Rex3	AGTCCACAA	AACACATGTA	GACTGGATGG	GCAAACTCCCAC	GCACACT-CA	AAATATCCTC
0.niloticusOre3	TATCCTCTCAA	JGA'I'AC'I''I'GA	GGGTGCATGGG	GAG'I''I''I'GCCCAA	CCAGTCTACA	ATGTGTGTTTTG
0.niloticusOre5	TATCCTCTCGA	JGATACTTGA	GGGTGCATGGG	GAGTTTTGCCCAA	CCAGTCTACA	ATGTGTGTTTTTG
0.niloticusorei	татестстсаа	GATACTTGA	GGGTGCATGGG		CCAGTCTACA	
C labridencia/	TATCCICICAA	CATACIIGA	GGGIGCAIGGG	AGIIIGCCCAA	CCAGICIACA	
C labridengCic?	TATCCTCTCAA	ICATATICGA	GIAIGIGIGGG	AGITIGCCCAA	CCAGICIAC	
c.iabi idenseiez	*** * *	* *	* ** ***	****	** ** **	* * *
	50 260) 27	0 280	290	300	310
	-			-	-	
Rex3	GAGAGGATA	AAAGAGC'I'GG	TCCAGTGTTCC		AAAACCGCA	I'TGTTCCTCT
0.niloticusore3	TGGACTTGGAG	AAGGCATTCG	ACC-GIGICCC		TCCTGTGGG	AGGTGTTGCG
0.niloticusores	TCCACTTCCAC	AAGGCAIICG	ACC-GIGICCC		TCCIGIGGG	AGGIGIIGCG
0 niloticus0re4	TGGACTTGGAG	AGGCATTCG	ACC-GTGTCCC	TCGGGGGTG	TCCTGTGGG	AGGTGCTGCG
C.labridensCic4	TGGACTTGGAG	AGGCATTCG	ACC-GCACCCC	!	7	ATACTGCA
C.labridensCic2	TGGACTTGGAG	AAGGCATTTG	ACC-GTGTCCC	- CTCG		-GGTCCTGCG
	** ***	** * * *	** * **			* *
	320	330	340	350	360	370
		-			-	
Rex3	TGAATCTGAGG	FTCGACTAAC	AGAGGACCCTC	CTTTCCAGCAC	CCTGGCATA	ACCTTACCGG
0.niloticusOre3	GGAGTATGGGG	F-TCTGGCCC	ATTGCTACGGG	GCCATT-CGATC	CCTAT-ACA	ACCGTTGCAA
0.niloticusOre5	GGAGTATGGGG.	rereregeeee	ATTIGCTACGGG	CCATT-CGATC	CCTAT-ACA	ACCGITGTAA
0.niloticusorel	GGAGTATGGGGG	r-TCTGGCCC	ATTGCTACGGG	CCATT-TGATC		ACCGITGCAA
C labridonaCia4	GGAGIAIGGGG.	IGICIGGCCC		CCGII-CGAIC	CCIAI-ACAA	ACCGIIGCAA
C.labridensCic?	GGAGTATGGGG	LGTCTGGCCC FGTCTGGCCC	GTTGTTGCGGG	CCATT-CAGIC	CTTGT-ACA	ACCGCAGIGA
C. 1001 10C110C1C2	** ** **	* *	* *	* * * *	* * * * * *	***
	380	390	400	410	420	430
		-	-	-		
Rex3	GGAGGCTGAGG	AGTGTGATCC	CCCGATAGTTO	GACACACCCTC	CGGTCTCCCI	rcttaaagat
0.niloticusOre3	G-AGTTTG	-GTTCGCATT	GCCGGCAATAA	GTCGAACTC	GT-TCCCC	GGTGGGTGAT
U.niloticusOre5	G-AG'I"ITG	-G'I''I'CGCATT	GC'I'GGCAATAA	AGICGGACTC	GI-TTCT	JGTGGGTGAT
U.NILOTICUSUREL	G-AGI I'I'G	-giicgcal'a	GUCAGCAATA	aGicggac'l'C	GI-ICCC(JG I GGG I GA'l'

		0	- J U	
Rex3	GGGGA	CCACC	ACCCCGT	ГGAA
0.niloticusOre3	GGGCT	'C		
0.niloticusOre5	GGGCT	'C		
0.niloticusOre1	GGGCT	'C		
0.niloticusOre4	GGGCT	'C		
C.labridensCic4	GGACT	'C		
C.labridensCic2	GGACT	'C		
	* *	*		

ANEXO III: Alinhamento da seqüência *Rex6* de *C. kelberi* com as das demais espécies de ciclídeos da tabela 13, incluindo-se os gaps.

	10 20 30 40 50 60
Rex6 C.labridensCla2 O.niloticusOni2 O.nloticusOni1 O.niloticusOni3 C.labridensCla1	GGGAATTCGGATTTAAAAACATACTGGAGCTCCACAACCAAGTGCTGGCATTATACCGGAAA
Rex6 C.labridensCla2 O.niloticusOni2 O.nloticusOni1 O.niloticusOni3 C.labridensCla1	70 80 90 100 110 120
Rex6 C.labridensCla2 O.niloticusOni2 O.nloticusOni1 O.niloticusOni3 C.labridensCla1	130 140 150 160 170 180
Rex6 C.labridensCla2 O.niloticusOni2 O.nloticusOni1 O.niloticusOni3 C.labridensCla1	1902002102202302402
Rex6 C.labridensCla2 O.niloticusOni2 O.nloticusOni1 O.niloticusOni3 C.labridensClal	50260270280290300310 <t< td=""></t<>
Rex6 C.labridensCla2 O.niloticusOni2 O.nloticusOni1	320 330 340 350 360 370

O.niloticusOni3 C.labridensCla1	AGAGAAGAGCTTGAGAAGATGTGGAGGGTGAAGGTGACGGTGGTCCCAGTGGTAATCAGAAC AGAGAAGAGCTAGAGAGGGATGTGAAAGGTGAAGGCAACAGTGGTCCCCGTGGTAATCGGAAC
Rex6 C.labridensCla2 O.niloticusOni2 O.niloticusOni3 C.labridensCla1	380 390 400 410 420 430
Rex6 C.labridensCla2 O.niloticusOni2 O.nloticusOni1 O.niloticusOni3 C.labridensCla1	440450460470480490 -
Rex6 C.labridensCla2 O.niloticusOni2 O.nloticusOni1 O.niloticusOni3 C.labridensCla1	500 510 520 530 540 550 5
Rex6 C.labridensCla2 O.niloticusOni2 O.niloticusOni1 O.niloticusOni3 C.labridensCla1	60 570 580 590 600 610 620 - TATGGGAGAGCTCCCAACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATA
Rex6 C.labridensCla2 O.niloticusOni2 O.niloticusOni1 O.niloticusOni3	630 GCTTGGCGTATCAA

C.labridensCla1 -----

ANEXO IV: Alinhamento da seqüência *Rex1* de *C. kelberi* com as das demais espécies de peixes da tabela 11, incluindo-se os gaps.

	10	20	30	40	50	60
				-		
Rex1	CCTCTATCA	CATTATTTCT	GAGGGACAA	-GCTGGAGCTG	FCAGGAGTO	GGACCACCACATG
C.labridensCil-2	-ATCCAGC-0	CAGGACTTGT	GAGGGACAA	-GTCTGAGTTG	FCAGGAGTO	GGACAACCACATG
C.labridensCil-3	-ATCCAGC-0	CAGGACTTCT	GAGGGACAA	-GTGGGAGTTG	rcaggagto	GGACAACCACATG
C.labridensCil-1	-ATCCAGC-0	CAAGACTTCT	GAGGGACAA	-GCTGGAGCTG	FCAGGAGTO	GAACCACCACATG
C.labridensCil-4	-ATCCAGC-0	CAGGACTTCT	GAGGGACAA	-GTTGGAGTTG	FCAGGAGTO	GGACAACCACATG
0.niloticusOrn-5	-ATCCAGC-0	CACGACTTCT	GAGGGACAA	-GCTAGAGCTA	rcgggagto	GGACCACCACATG
0.niloticusOrn-1	-ATCCAGC-0	CACGACTTCT	GAGAGACAA	-GCTGGAGCTA	rcgggagto	GGACCACCACATG
0.niloticusOrn-4	-ATCCAGC-0	CACGACTTCT	GAGAGACAA	-GCTGGAGCTA	rcgggagto	GGACCACCACATG
H.bimaculatusHeb-1	-ATCCAGC-0	CACAACTCCT	GAGAGACAA	-GCTGGAGCTA	rcaggagT	IGACCACCACATG
H.bimaculatusHeb-2	-ATCCAGC-0	CACGACTCCT	GAGAGACAA	-GCTGGAGCTA	rccggagto	GGACCACCACATG
H.bimaculatusHeb-4	-ATCCAGC-0	CACGACTCCT	GAGAGACAA	-GCTGGAGCTA	FCCGGAGT	GGACCACCACATG
H.bimaculatusHeb-5	-ATCCAGC-0	CACAACTCCT	GAGAGACAA	-GCTGGAGCTA	rcaggagto	GGACCACCACATG
A.japonicaAnj-1	-ATACAGC-0	CTGCGCTTCT	GAGGGACAA	-GTTGGACCGC	ACAGGGGT(GGACCACCACCTC
A.japonicaAnj-2	-ATACAGC-0	CTATGCTTCT	GAGGGACAA	-GTTGGAGCGC	ACAGGGGT(GGACCACCACCTC
A.japonicaAnj-3	-ATACAGC-0	CTGCGCTTCT	GAGGGACAA	-GTTGGACCGC	ACAGGGGT	GAACCACCACCTC
T.newnesiRex1-1b	-ATCCAGC-0	CCCCGCTCCT	GGGGGACAA	-GCTGCAGCTC	-TCGGGGG-T	GGATCACCACCTT
T.newnesiRex1-1a	-ATCCAGC-0	CCCCGCTCCT	GGGGGACAA	-GCTGCAGCTC	-TCGGGGG-T	GGATCACCACCTC
A.anguillaAna	-ATACAGC-0	CTGCGCTTTT	GAGGGACAA	-GTTGGACCGC	ACAGGGGT	GAACCACCACCTC
N.coriicepsRex1b	-ATCCAGC-0	CCCCGCTCCT	GGGGGACAA	-GCTGCAGCTC	-TCGGGGG-T	GGATCACCACCTC

N.coriicepsRex1a -ATCCAGC-CCCTGCTCCTGGGGGGACAA-GCTGCAGCTC-TCGGGGGG-TGGATCACCACCTC G.acuticepsRex1a -ATCCAGC-CCCCGCTCCTGGGGGGACAA-GCTGCAGCTC-TCGGGGGG-TGGATCAACACCTC -----CACCTC G.acuticepsRex1b D.mawsoniRex1b -----ACAAGGCTGCAGCTGGTCGGGGGGGGGGATCACCACCTC D.mawsoniRex1b -----C-CCCGCTCCCGGGGGGACMA--GCTGCAGCTA-TCGGGGGG-TGGATCACTACCTC B.baikalensisorf12 -----TTGCTTCTGAGGGACAA-GCTGGAGCAGACCGGGG--TGGACCACCACCACCTC B.baikalensisBab-1 -ATTCAGC-CTTTGCTTCTGAGGGACAA-GCTGGAGCAGACCGGGG--TGGACCACCACCTC B.baikalensisBab-2 -ATTCAGC-CTTTGCTTCTGAGGGACAA-GCTGGAGCAGACCGGGG--TGGACCACCACCTC 0.latipesOrl-2 -ATTCAAC-CGCTGCTGCTGAGGGACAA-GTTGGTGCACATGGGCG--TGGACCAGCATCTG -ATTCAAC-CGCTGCTGCTGAGGGACAA-GTTGGTGCACATGGGCG--TGGACCAGCATCTG 0.latipesOrl-4 100 70 80 90 110 120 -- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ----TCCCAGTGGATACTGGACTACCTCACTGG-CGCCCACAGTATGTGAG-ACACAGGGCTGTGT Rex1 C.labridensCil-2 TCCCAGTGGATACTGGACTACCTCACTGACCGCCCACAGTACGTGAGGACACAGGGCTGTGT C.labridensCil-3 TCCCAGTGGATACTGGACTACCTCACTGACCGCCCACAGTACGTGAGGTCACAGGGCTGTGT C.labridensCil-1 TCCCACTGGATACTGGACTACCTCACTGACTGCCCACAGTACGTGAGGACACAGGGCTGCGT TCCCAGTGGATACTGGACTGCCTCACTGACCGCCCACAGTACGTGAGGACACAGGGCTGTGT C.labridensCil-4 0.niloticusOrn-5 TCCCAGTGGATACTGGACTACCTCACAGAACGCCCACAGTATGTGAGGTCACAGGGCTGTGT 0.niloticusOrn-1 TCCCAGTGGATACTGGACTACCTCACAGAACGTCCACAGTATGTGAGGTCACAGGGCTGTGT 0.niloticusOrn-4 TCCTAGTGGATACTGGACTACCTCACAGAACGTCCACAGTATGTGAGGTCACAGGGCTGTGT H.bimaculatusHeb-1 TCCCATTGGATATTGGACTACCTCACAGAACGTCCACAGTATGTGAGGTCACAGGCCTGTGT H.bimaculatusHeb-2 TCCCATTGGATATTGGACTACCTCACAGAACGTCCACAGTATGTGAGGTCACAGGGCTGTGT H.bimaculatusHeb-4 TCCCATTGGATATTGGACTACCTCACAGAACGTTCACAGTATGTGAGGACACAGGGCTGTGT H.bimaculatusHeb-5 TCCCACTGGATATTGGACTACCTCACAGAACGTCCACAGTATGTGAGGTCACAGGGCTGTGT A.japonicaAnj-1 ACAGCATGGATCCTGGACTACCTCACCAACCGACCACAGTATGTGAGGATACAGGACTGTGA A.japonicaAnj-2 ACAGCATGGATCCTGGACTACCACACCAACCGACCACAGTATGTGAGGATACGGGTCTGTGA ACAGCATGGATCCTGGACTACCTCACCGACCGACCACAGTATGTGAGGATACAGGACTGTGA A. japonicaAnj-3 T.newnesiRex1-1b ACCTCCTGGATCCTGGACTACCTCACCAACCACCACAGTACATGAGGACCAGGGAGTGTCA T.newnesiRex1-1a ACCTCCTGTATCGTGGACTACCTCACCAACCGCCCACAGTACGTGAGGACCAGGGAGTGTCA ACAGCATGGATCCTGGACTACCTCACCAACCGACCACAGTATGCGAGGATACAGGACTGTGA A.anguillaAna N.coriicepsRex1b ACCTCCTGGATCCTGGACTACCTCACCAACCGCCCACAGTACGTGAGGACCAGGGAGTGTCA N.coriicepsRex1a ACCTCCTGGATCCTGGACTACCTCACCAACCGCCCACAGTACGTGAGGACCAGGGATTGTCA G.acuticepsRex1a ACCTCCTGGATCCTGGACTACCTCACCAACCGCCCACAGTACGTGAGGACCAGGGAGTGTCA ACCTCCTGGATCCTGG---ACCTCACCAACCGCCCACAGTACGTGAGGACCAGGGAATGTCA G.acuticepsRex1b D.mawsoniRex1b ACCTCCTGGATCCTGGACTACCTCACCAACCGCCCACAGTACGTGAGGACCAGGGAGTGTCA D.mawsoniRex1b ACCTCCTGGATCCTGGACTACCTCACCAACCGCCCACAGTACATGAGGACCAGGGAGTGTCA B.baikalensisorf12 ACTGCATGGATCCTGGACTACCTCACCAACCGTCCACAGTATGTGCGGATACGGGAGTGTGA B.baikalensisBab-1 ACTGCATGGATCCTGGACTACCTCACCAACCGTCCACAGTATGTGCGGATACGGGAGTGTGA B.baikalensisBab-2 ACTGCATGGATTCTGGACTACCTCACCAACCGTCCACAGTATGTGCGGATACGGGAGTGTGA TCTGCATGGATGCTGGACTACCTCTCAAACCGACGGCAGTACGTGAGGTCTCGCCACTGTGA 0.latipesOrl-2 TCTGCATGGATGCTGGACTACCTCTCAAACCGACTGCAGTACGTGAGGTCTCGCCACTGTGA 0.latipesOrl-4 ** ** *** ** * * * * * * * * * 130 140 150 160 170 180 CTCC-ACAGGCTGGTCTGCA-TACTGGGGGCCC-CCAGGGAACTGTGCTGGCACCGTTCCTCT Rex1 C.labridensCil-2 CTCTGACAGGCTGGTCTGCAGTACGGGGGGCCCCACAGGGAACTGTGCTGGCACCGTTCCTCT C.labridensCil-3 CTCTGACAGGCTGGTCTGCAGTACGGGGGGCCCCACAGGGAACTGTGCTGGCACCGTTCCTCT C.labridensCil-1 CTCTGACAGGCTGGTCCGCAGTACTGGGGCCCCACAGGGAACTGTGCTGGCCCCATTCCTAT C.labridensCil-4 CTCTGACAGGCTGGTCTGCAGTACGGGGGGCCCCACAGGGAACTGTGCTGGCACCGTTCCTCT O.niloticusOrn-5 ${\tt CTCTGACACGCTGGTCTGCAGTACGGGAGCCCCACAGGGAACTGTGCTGGCACCGTTCCTCT}$ 0.niloticusOrn-1 CTCTGACACGCTGGTCTGCAGTACGGGGGGCCC-ACAGGGAACTGTGCTGGCACCGTTCCTCT CTCTGATACACTGGTCTGCAGTACAGGGGGCCCCACAGGGAACTGTGGTGGCACCGTTCCTCT 0.niloticusOrn-4 H.bimaculatusHeb-1 CTCTGACACGCTGGTCTGCAGTACGGGGGCCCCCACAGGGAACTGTGCTGGCACCGTTCCTCT H.bimaculatusHeb-2 CTCTGACACGCTGGTCTGCAGTACAGGGGCCCCCACAGGGAACTGTGCTGACACTGTTCCTCT H.bimaculatusHeb-4 CTCTGACACGCTGGTCTGCAGTACAGGGGGCCCCCACAGGGAACTGTGCTGGCACTGTTCCTCT H.bimaculatusHeb-5 CTCTGACACGCTGGTCTGCAGTACGGGGGGCCCCACAGGGAACTGTGCTGGCACCGTTTCTCT GTCCGACAACGTTGTCTGCAGCACGGGGGGTCTGG-----GGTTTTGCTCCCTTCCTCT A.japonicaAnj-1 A.japonicaAnj-2 GTCCAACATGGTTGTCTGCAGCACGGGGGGCCCGGCAGGGAACAGTTCTGGCTCCCTTCCTCT A.japonicaAnj-3 GTCCGACATGGTTGTCTGCAGCACGGGGGGCCCGGCAGGGAACAGTTCTGGCTCCCTTCCTCT ATCAGACACCATCATCAGCAGTAAGGGGGGCCCCACAGGGGACGGTGCTGGCACCGTTTCTCT T.newnesiRex1-1b T.newnesiRex1-1a ATCAGACACCATCATCAGCAGTACGGGGGGCCCCCCAGGGGACGGTGCTGGCACCGTTTCTCT GTCCGACAAGGTTGTCTGCAGCACGGGGTTCTGG-----GTTCTGGCTCCCTTCCTCT A.anguillaAna N.coriicepsRex1b ATCAGACACCATCATCAGCAGTACGGGGGGGCCCCCAGGGGACGGTGCTGGCACCGTTTCTCT ATCAGACACCATCATCAGCAGTACAGGGGGCCCCCCAGGGGACGGTGCTGGCACCGTTTCTCT N.coriicepsRex1a G.acuticepsRex1a ATCAGACACCATCATCAGCAGTACGGGGGGCCCCCCAGGGGACGGTGCTGGCACCGTTTCTCT ATCAGACACCATCATCAGCAGTACGGGGGCCCCCCAGGGGACGGTGCTGGCACCGTTTCTCT G.acuticepsRex1b D.mawsoniRex1b ATCAGACACCATCATCAGCAGTACGGGGGCCCCCCAGGGGACGGTGCTGGCACCGTTTCTCT D.mawsoniRex1b ATCAGACACCATCATCAGCAGTACGGGGGGCCCCCCAGGGAACGGTGCTGGCCCCGTTTCTCT B.baikalensisorf12 GTCAGATCGGGTGTCCTGCAGCACGGGGGGCTCCACAGGGAACCGTTCTGGCTCCATTCCTGT B.baikalensisBab-1 GTCAGATCGGGTGTCCTGCAGCACGGGGGGCTCCACAGGGAACCGTTCTGGCTCCATTCCTGT B.baikalensisBab-2 GTCAGATCGGGTGTCCTGCAGCACGGGGGGCTCCACAGGGAACCGTTCTGGCTCCATTCCTGT 0.latipesOrl-2 GTCTGACATGATTGTCTTTAACACAGGAGCACCGCAGGGAACAGTTCTGACTCCGTTCCTGT 0.latipesOrl-4 GTCAGATATGATCGTCTGTAACACAGGAGCACCGCAGGGAACAGTTCTGGCTCCGTTCCTGT * * * * * ** * * * *

	190	200	210) 2	20 23	0 240	2
		·			-		
Rex1	TCA	CC-TCTACACT(GCATACTTCI	CCATCAAC	TCCCCAC-CTG	GCATCTACAGAAA	ATTCTCT
C.labridensCil-2	TCA	CCCTCTACACT	GCAGACTTCI	CCATCAAC	TCACCACGCTG	CCATCTGCAGAAG	JTTCTCT
C.labridensCil-3	TCA	CCCTCTACACT	GCAGACTTCI	CCATCAAC	TCCCCACGCTG	CATCTGCAGAAG	JTTCTCT
C.labridensCil-1	TCA	CCCTCTACACT	GCAGACTTCI	CCATCAAC	TCCCCACGCTG	CATCTGCAGACO	JTTCTCT
C.labridensCil-4	TCA	CCCTCTACACT	GCAGACTTCI	CCATCAAC	TCACCACGCTG	CCATCTGCAGAAG	JTTCTCT
0.niloticusOrn-5	TCA	CCCTCTACACT	GCAGACTTCI	CCATCAAC	TCCCCACGCTG	CACCTACAGAAG	TTCTCT
0.niloticusOrn-1	TCA	CCCTCTACACT(JCAGAC'I''I'C'I	'CCA'I'CAAC	TCCCCCACGCTG	CACCTACAGAAG	FITCTCT
U.niloticusOrn-4	TCA		JCAGACITICI	CCATCAAC	TCCCCACGCTG		FITCICI
H.DIMACULATUSHED-1	TCA		JCAGACTTCT		TCCCCACGCTG		TTCTCT
H. DIMACUIALUSHED-2	TCA		CAGAAIICI	TCATCAAC	TCCCCACGCIG		
H bimagulatugHeb-5	TCA			CCATCAAC	TCCCCACGCIG	CACCIACAGAAG	
A japonicaAni-1	TCA	CCTCTACACI	CAGACATCA	CACACAAC	TCACCTAACTC	CACCUCCACAGAAC	TTCTCT
A. japonicaAni-2	TCA	CCTCTGCACT	GCAGACTTCA	CGCACAAC	TCAGCTAACTG	CACCTGCAGAA	TTCTCT
A.japonicaAnj-3	TCA	CCTCTGCACT	GCAGACTTCA	CGCACAAC	TCAGCTAACTG	CCACCTGCAGAAC	TTCTCT
T.newnesiRex1-1b	TCA	CCCTCTACACT	GCAGACTTCA	CCCACAAC	ACTGCAACCTG	ICACCTGCAGAAC	TTCTCT
T.newnesiRex1-1a	TCA	CCCTCTACACT	GCAGACTTCA	CCCACAAC	ACTGCAACCTG	ICACCTGCAGAAG	JTTCTCT
A.anguillaAna	TCAG	CCCTCTACACT	GCAGACATCA	CACACAAC	TCAGCTAACTG	CCACCTGCAAAAG	JTTCTCT
N.coriicepsRex1b	TCAG	CCCTCTACTCT	GCAGACTTCA	CCCACAAC	ACCGCAACCTG'	FCACCTGCAGAAG	JTTCTCT
N.coriicepsRexla	TCAG	CCCTCTACACT	GCAGACTTCA	CCCACAAC	ACCGCAACCTG'	ICACCTGCAGAAG	TTCTCT
G.acuticepsRex1a	TCAG	CCCTCTACACT	GCAGACTTCA	CCCACAAC	ACTGCAACCTG	FCACCTGCAGGAG	TTCTCT
G.acuticepsRex1b	TCAC	CCCTCTACACT	GCAGACTTCA	CCCACAAC	ACGGCAACCTG'	FCACCTGCAGAAG	JTTCTCT
D.mawsoniRex1b	TCA	CCCTCTACACT	GCAGACACCA	CCCACAAC	ACTGCAACCTG	FCACCTGCAGAAG	JTTCTCT
D.mawsoniRex1b	TCA	CCCTCTACACT	GCAGACTTCA	CCCACAAC	ACTGCAACCTG	FCACCTGCAGAAG	JTTCTCT
B.baikalensisorf12	TCT	CATTTACACC	FCGGACTTTA	AACACAAC	TCTGCCAACTG	CACCTGCAAAAG	JTTCTCT
B.baikalensisBab-1	CCT	CATTTACACC	FCGGACTTTA	AACACAAC	TCTGCCAACTG	CACCTGCAAAAG	JTTCTCT
B.baikalensisBab-2	CCT	CATTTACACC	FCGGACTTTA	AACACAAC	TCTGCCAACTG	CACCTGCAAAAG	JTTCTCT
0.latipesOrl-2	TCA	C'I'G'I'C'I'ACACCO	JCAGAC'I''I'CA	TGTCCAGC	TCAGCATCTGG	I'CACC'I'GCAGAAG	FITCTCA
0.latipesor1-4	TCAC		JCAGACITCA	TGTCCAGC	TCAGCATCTTG	TCACCTGCAGAAG	FITCTCG
	* *	* * * * *	* *	** *	* * *	** * **	* * * *
	ΕO	260	270	200	200	200	210
	_						
Pov1							1 I
C.labridensCil-2	GAC	ACTCTGCCCT	AGTTGGCCTC	ATAACAGG	TGAGGACGACT	CAGAGTACAGACA	4G
C.labridensCil-3	GAC	GACTCTGCCAT	AGTTGGCCTC	ATCACAGG	TGAGGATTACT	CGGAGTACAGACA	4G
C.labridensCil-1	GAC	GACTCTGCCGT	AGTTGGCCTC	ATCACAGA	TGAGGATGACG	CAGAGTACAGACA	AG
C.labridensCil-4	GAC	GACTCTCCCCT	AGTTGGCCTC	ATAACAGG	TGAGGACGACT	CAGAGTACAGACA	4G
0.niloticusOrn-5	GAC	GACTCTGCCAT	AGTCGGCCTC	ATCACAGG	TGAGGACGACT	CAGAGTACAGACA	4G
0.niloticusOrn-1	GAC	GACTCTGCCATA	AGTCGGCCTC	ATCACAGG	TGAGGACGACT	CAGAGTACAGACA	4G
0.niloticusOrn-4	GAC	GACTCTGCCATA	AGTCGGCCTC	ATCACAGG	TGAGGACGACT	CAGAGCACAGACA	4G
H.bimaculatusHeb-1	GAC	GACTCTGCCATA	AGTCATCCTC	ATCACAGG	TGAGGACGACT	CAGAGTACAGACA	4G
H.bimaculatusHeb-2	GAC	GACTCTGCCATA	AGTCGGCCTC	ATCACAGG	TGAGGACGACT	CAGAGTACAGAGA	4G
H.bimaculatusHeb-4	GAC	GACTCTGCCAT	AGTCGGCCTC	ATCACAGG	-GAGGACGACT	CAGAGTACAGACA	4G
H.bimaculatusHeb-5	GACO	GACTCTGCCAT	AGTCAGCCTC	ATCACAGG	'I'GAGGACGAC'I'	CAGAGTACAGACA	4G
A.japonicaAnj-i	GATO	GACTCTGCAAT(ATCACAGA	TGGGGGATGACA	JGGAGTACAGAGA	7.T
A. JaponicaAnj-2	CATC	JACICCGCAAI		AICACAGA	TGGGGGACGACA	JGGAGIACAGAGA	11
T newnegiRev1-1b	CATC	CACICCGCAAI	CAGCIII	ATCACAGA	CCACCACCACA	CCACTACAGAGA	11
T newnesiRex1-1a	GAC	ACTCCCCCAT	CTTCCACTC	ATCTCCAA	CGAGGACGACA	CCACTACACCO	
A anguillaAna	GATO	ACTCTGCAAT	ATCGGCCTC	'ATCACAGA'	TGGGGACGACA	GGAGTACAGAGA	ΔΠΟΠΟΠΟ ΔΤΤ
N.coriicepsRex1b	GAC	ACTCCGCCAT	CGTTGGCCTC	ATCACCAA	CGAGGACGACA	GGAGTACAGGG	AG
N.coriicepsRex1a	GAC	GACTCCGCCAT	CGTTGGCCTC	ATCACCAA	CGAGGACGACA	GGAGTACAGGGA	4G
G.acuticepsRex1a	GAT	GACTCCGCCAT	GTTGGCCTC	ATCACCAA	CGAGGACGA	-GGAGTACAGGG	AG
G.acuticepsRex1b	GAC	GACTCCGCCAT	CGTTGGCCTC	ATCACCAA	TGAGGACGACA	GGGAGTACAGGGA	4G
D.mawsoniRex1b	GAC	GACTCCGCCAT	CGTTGGCCTC	ATCTCCAA	CGAGGACGACA	GGGAGTACAGGGA	4G
D.mawsoniRex1b	GAC	GACTCCGCCAT	CGTTGGCCTC	ATCTCCAA	CGAGGACGACA	JGGAGTACAGGGA	4G
B.baikalensisorf12	GACO	GACTCTGCAAT	CGTCGGCCTC	ATCTCTGC	CGATGATGACA	JGGAGTACAGGGA	4A
B.baikalensisBab-1	GAC	GACTCTGCAAT	CGTCGGCCTC	ATCTCTGC	CGATGATGACA	GCAGTACAGGGA	4A
B.baikalensisBab-2	GAC	GACTCTGCAAT	CGTCGGCCTC	ATCTCTGC	CGATGATGACA	JGGAGTACAGGGA	4A
0.latipesOrl-2	GATO	GACTCTGCCGT	IGTCGGACTA	ATCATGGA	TGACGATGACA	JAGAGTATAGAGA	4A
0.latipesor1-4	GATO	GACTCTGCCGT.	rgrcggacia	ATCATGGA	TGACGATGACA	JAGAGTATAGAGA	1A
		320	330	340	350	360	370
				-		_ .	
Rex1		-TGGACTCAGG	I ACTTTGTGGA	CTGGTGCC	AGCGGAACCAC	CTCCTGATCAATC	CTGCTT
C.labridensCil-2		-AGGACTCAGG	ACTTTGTGGG	ATGGTGCC	AGCGGAACCAC	CTCCTGATCAACC	GTGCTA
C.labridensCil-3		-AGGACTCAGG	ACTTTGTGAA	CTGGTGCC	AGCGGAACCAC	CTCCTGATCAATC	CTGCTA
C.labridensCil-1		TGGACTCAGG	ACTTTGTGGA	CTGGTGCC	AGCGGAACCAC	CTCCTGATTAACC	SCTGCTA
C.labridensCil-4		AGGACTCAGG	ACTTTGTGGG	ATGGTGCC	AGCGGAACCAC	CTCCTGATCAACO	JCTGCTA
0.niloticusOrn-5		-TGGACTCTGG	ACTTTGTGGA	CTGGTGCC	AGCAGAACCAC	CTGCTGATCAACG	CCGGGA
0.niloticusOrn-1		TGGACTCTGG	ACTTTGTTGA	CTGGTGTC	AGCAGAACCAC	CTGCTGATCAACA	ACCGGGA
0.niloticusOrn-4		-TGGACTCTGG	ACTTTGTGGA	CTGGTGCC	AGCAGAACCAC	CTGCTGATCAACO	CCGGGA
H.bimaculatusHeb-1		-TGGACTCTGG	ACTTTGTGGA	CTGGTGCC	AGCAGAACCAC	CTGCTGATCAAT	JTCGGGA
H.bimaculatusHeb-2		-TGGACTCTGG	ACTTTGTGGA	CTGGTGCC	AGCAGAACCAC	CTGCTGATCAACA	ACCGGGA

H himaculatusHeb-4	
II bime mulatore II b	
H.DIMACUIATUSHED-5	IGGATTCIGGACTTIGIGGACTGGIGCCAGCAGAACCACCIGCIGATCAACGGCGGGA
A.japonicaAnj-1	CTGACACAGGGCTTTGTGGACTGGTGCCAGCTGAACCGCCTCCAGCTCAATGCAGGGA
A japonigaAni-2	
A. JaponicaAnj=2	
A.japonicaAnj-3	CTGACCCAGGGCTTTGTGGATTGGTGCCAGTGGAACTGCCTCCAGCTCAATGCAGGGA
T.newnesiRex1-1b	
T.newnesiRex1-la	GGAGCTGACGCAGGACTTCCACCTTCTGGTGCCAGAGGAACCACCTCCAGCTCAACGCAGCAA
A.anguillaAna	CTGACCCAGGGCTTTGTGGACTGGTGCCAGCTGAACCGCCTCCAGCTCAATGCAGGGA
N sowijsopsDoulb	
N.COLIICEPSREXID	
N.coriicepsRex1a	CTGACGCAGGACTTCACCTTCTGGTGCCAGAGGAACCACCTTCAGCTGAATGCAGCGA
C agutigongBowla	
G.aculicepskexia	
G.acuticepsRex1b	CTAACGCAGGACTTCACCCTCTGGTGCCAGAGGAACCACCTCCAGCTAAACGCAGCAA
D mawgoniPev1h	
D. Mawsonincerib	
D.mawsoniRex1b	CTGACGCAGGACTTTACCTTCTGGTGCCAGAGGAACCACCTCCAGCTCAACGCAGCGA
B.baikalensisorf12	
B.baikalensisBab-l	C'I'TAATCAGGAC'I"I'I'I'I'AGGATGGTGCCAGCGGAACCGCCTCCAGATAAACTCCAGTA
B.baikalensisBab-2	
0.latipesOrl-2	CTGATTCAGAACTTTGTGGACTGGTGCCAGCGGAACCACCTCCAGATTAATGCAGGGA
0.latipesOrl-4	
011d01P0D011 1	
	* * * * * * * * * * * * * * * * * * * *
	280 200 400 410 420 420
	380 390 400 410 420 430
Derr1	
REXI	AAAC-AAGGAGCIIGIGGIGGAIIICCGCAGGIGCAGACCCAACACACIGAACCGGIIA
C.labridensCil-2	AAACCAAGGAGCTGGTGGTGGATTTCCGCAAGCGCAGACCCACCACACTGGCACCGGTG
C labridencCil_3	
C. Tabi Idensci 1-5	
C.labridensCil-1	AAACCAAGGAGCTGGTGGTGGATTTCCGCAGGCGTGGACCCACCACACTGACACCGGTG
C labridensCil-4	
C.IADIIACIISCII 4	
0.niloticusOrn-5	AAACCAAGGAGTTGGTGGTGGACTTCCGGAGACGCAGACCCACCACACTGACACCGGTG
0 niloticusOrn-1	
0.niloticusOrn-4	AAACCAAGGAGTI'I'GG'I'GGAC'I'I'CCGGAGACGCAGACCCACC ACAC'I'GACACCGG'I'G
H.bimaculatusHeb-1	AAACCAAGGAGTTGGTGGGTGGATTTCCCGGAGACGCGGAGACCCACCACACTGACACTGGTA
H.bimaculatusHeb-2	AAACCAAGGAG1"TGGTGGTGGTGGA1"I"TCCGGAGATGCAGACCCACC ACACTGACACCGGTA
H.bimaculatusHeb-4	AAACCAAGGAGTTGGTGGTGGATTTCCGGAGACGCAGACCCACCACACTGACACCAGTG
TT bime mulatore Ttab. F	
H.DIMACUIATUSHED-5	AAACCAAGGAGTTGGTGGTGGATTTCCGGAGACACAGACCCACC ACACTGACACCAGCT
A.japonicaAnj-1	AAACCAAGCAGCTGGTGGTGGGGCTTCCGAAGGTGTAAACACTCTTCTCCTCCCATACCAGTG
l jenenjaolni O	
A. JaponicaAnj-z	AAACCAAGGAGCIGGIGGACIICCGAAGGIGCCAACACICICCICCIAIACCAGIG
A.japonicaAnj-3	AAACCAAGGAGCTGGTGGTGGACTTCCGAAGGTGCCAACAATCGCCTCCTATACCAGTG
T normogiPort 1h	
1.newnesikexi-iD	AGACCAAGGAGCIGGIGGIGGAIIICAGACGGCGCCAACACICCCCCCCGACACCAGIG
T.newnesiRex1-1a	AGACCAAGGAACTGGTGGTGGACTTCAGACGGCGCCAACACTCCCCCCCGACACCAGTG
A anguillaAna	a a acca acca composition of the
A.anguiriaAna	
N.coriicepsRex1b	AGACCAAGGAGCTGGTGGTGGATTTCAGACGGCGCCAACACTCCCCCCCGACACCAGTG
N coriiceneRevla	$\Delta C \Delta C C \Delta \Delta C C A C C C C C C C C C C $
N.COITICCPSRCAID	
G.acuticepsRexla	AGACCAAGGAGCTGGTGGTGAATTTCAGACGGCGCCAACACTCCCCCCCGACACCAGTG
G.acuticepsRex1b	AGACCAAGGAGCTGGTGGTGGATTTCAGACGGCGCCAACACTCCCCCCCCGACACCAGTG
D mericani Devila	
D.MawSonikexiD	AGACCAAGGAACIGGIGGIGGAIIICAGACGCCCAACACICCCCCCCGACACCAGIG
D.mawsoniRex1b	AGACCAAGGAACTGGTGGTGGATTTCAGACGGCGCCATCACTCCCCCCCCGACACCAGTG
D beikelengigenf12	
B.Dalkalensisoriiz	AGACCAAGGAGCIGGIGGACIICCGCCGGGGCAAACGCICICCICCGCIACCAIIG
B.baikalensisBab-1	AGACCAAGGAGCTGGTGGTGGACTTCCGCCGGGGCAAACGCTCTCCTCCGCTACCATTG
P baikalencicPab-2	$\lambda \subset \lambda \subset C \subset \lambda \subset C \subset C \subset C \subset C \subset C \subset C \subset $
B.Daikarensisbab-2	
0.latipesOrl-2	AAACCAAGGAGCTGGTGGTAGACTTTCACAGGCACACTCACT
0.latipesOrl-4	AAACCAAGGAACCGGTGGTGGACTTTCACAGGCACACTCACT
0.1dc1pcbol1 1	
	* ** *** * ***** ** * * *
	440 450 460 470 480 490
Pov1	
I/CYT	AACATICAGGG-AGIGGA-TATITGAGATAGIGGACICTIATAAGIAC-IGGGTGTTCACCT
C.labridensCil-2	AACATCCAGGG-ACTGG-ACATTGAGATAGTGGACTCTTGTAAGTACCTGGGTGTTCACCT
C labridencCil_3	<u> </u>
C. Tabl Idenscii=3	AACAICIAGGG-AGIGG-ACAIIGAGAIAGIGGACACIIAIAAGIACCIGGGIGIICACCI
C.labridensCil-1	TACATCCAGGG-AGTGG-ACATTGAGATAGTGGACTCTTATAAGTACCTGGGTGTTCACCT
C labridencCil-4	<u> </u>
C. TADI IGENSCII-4	
0.niloticusOrn-5	AACATCCAGGG-AGTGG-ACATTGAGATAGTGGACTCTTATAGGTACCTGGGTGTTCACCT
0.niloticusOrn-1	AACATCCAGGG-AGTGGACATTGAGATAGTGGACTCTTATAGGTACCTGGGTGTCTCACCT
0 miloticuporn 1	
0.11110t1CusOrn-4	AACAICCAGGG-AGIGG-ACAITGAGATAGTGGACTCTTATAGGTACCTGGGTGTTCACCT
H.bimaculatusHeb-1	AACATCCAGGG-AGAGGACATTGAGATAGTGGACTCTTATAAGTACCTGGGTGTTCACCT
U bimagulaturuat o	
n.brmacuratusHeD-2	AACAICCAGGG-AGIGG-ACAIIGAGAIAGIGGACICIIAIAAGIACCIGGGTGTTCACCT
H.bimaculatusHeb-4	AACATCCAGGG-AGTGG-ACATTGAGATGATGGACTCTTATAAGTACCTGGGTGTTCACCT
H himaculatucuch E	$\Delta \Delta C \Delta T C C \Delta C C C - \Delta C \Delta T T C \Delta C \Delta T \Delta C T C C C C T T A T A C C T A C C T C C T C T$
	MICHTERAUU AUTO ACTIGACIAGIAGIAGIAGIAGIAGIAGIAGIAGIAGIAGIAGIAGI
A.japonicaAnj-1	AACATCCAGGG-AATGG-ACATTGAGATGGTGAAATCCTACAAGTACCTGGGTGTTCACCT
A japonicaAni-2	<u>ΑΑΛΑΤΟΛΑΓΑΓΑΑΑΑΤΑΓΑΑΑΑΤΤΓΑΑΑΑΤΤΓΑΑΑΑΤΤΟΛΑΑΑΑΤΑΛΟΥΤΟΛΑΑΑΤΑΛΟΥΤΟΛΟΥ</u>
A.japonicaAnj-3	AACATCCAGGG-AATGG-AAATTGGAGATGGTGAAATCTTACAAGTACCTGGGTGTTCACCT
T.newnesiRex1-1b	AACATCCAGGG-AGTGG-ACATTGAGATTGTGGAATCTTACAAATACCTGGGTGTTCACCT
T normonip1 1	
1.Hewnesikexi-la	AACCICCAGGG-AGCGG-ACAITGAGATTGTGAAATCTTACAAATACCTGGGTGTTCATCT
A.anguillaAna	AACATCCAGGG-AATGG-ACATTGAGATGGTGAAATCCTACAAGTACCTGGGTGTTCACCT
N corijana Boyth	
M.COLITCEPSKEXID	ACATEGAGG - ACATEGAGATEGEGAATCTTACAATACCTGGGIGTTCATCT
N.coriicepsRexla	AACATCCAGGG-AGCAG-ACATTGAGATTGTAAAATCTTACAAATACCTGGGTGTTCATCT
G.acuticepsRex1a	AACATCCAGGG-AGCTG-ACATTGAGATTGTGAAATCTTACAAATACCTGGGCGTTCATCT

AACATCCAGGG-AGCGG--TCATTGAGATTGTGGAATCTTACAAATACCTGGGTGTTCATCT

G.acuticepsRex1b
D.mawsoniRex1b	AACATCCAGGG-AGCAGACATTGAGATTGTGAAATCTTACAAATACCTGGGTGTTCATCT
D.mawsoniRex1b	AACATCCAGGG-AACGG-ACATTGAGATTGTGAAATCTTACAAATACCTGGGTGTTCATCT
B.baikalensisorf12	AGCATCCAGGG-ACTGG-ACATTGAGATGGTGACATCTTACAAGTACCTGGGTGTTCACTT
B.baikalensisBab-1	AGCATCCAGGG-ACTGGACATTGAGATGGTGACATCTTACAAGTACCTGGGTGTTCACTT
B.baikalensisBab-2	AGCATCCAGGG-ACTGG-ACATTGAGATGGTGACATCTTACAAGTACCTGGGTGTTCACTT
0.latipesOrl-2	AACATCCAAGG-AAGGG-ACATAGAGAGAGTGGATTCATACAAGTACTTGGGTGTTCACCT
0.latipesOrl-4	AACATCCTAGG-AAGGGACATTGAGAGAGTGGATTCATACAAGTACTTGGGTGTTCACCT
	* * ** * * * **** * * * * *************
	500 510 520 530 540 550 5
Rex1	${\tt GAACAATAAAATGGACTGGACTCACAA-CCTTTCCTTACAGAGGGTCAGACCATTTTTGGG}$
C.labridensCil-2	GAACAATAAACTGGACTGGACTCA-ATCACTGATGCGCTCTACAGGA
C.labridensCil-3	GAACAATAAACTGGACTGACTCGCAACACTGATGCGCTTTACAGGA
C.labridensCil-1	GAACAATAAACTGGACTGGACTCACAACACTGATGCGCTTTACAGGA
C.labridensCil-4	GAACAATAGACTGGACTGGACTCATAACACTGATGCGCTCTACAGGA
0.niloticusOrn-5	GAATAATAAACTGGACTGGAGCCACAACACTGATGCTCTT-ACAGGA
0.niloticusOrn-1	GAATAATAAACTGGACTGGAGCCACAACACTGATGCTCTTTACAGGA
0.niloticusOrn-4	GAATAATAAACTGGACTGGAGCCACAACACTGATGCTCTTTACAGGA
H.bimaculatusHeb-1	AAATAATAAGCTAGACTGGAGCCACAACACTGATGCTCTTTACAGGA
H.bimaculatusHeb-2	AAATAATAAGCTAGACTGGAGCCACAGCACTGATGCTCGTTACAGGA
H.bimaculatusHeb-4	AAATAATAAGCTAGACTGGAGCCACAACACTGATGCTCTTTACAGGA
H.bimaculatusHeb-5	AAATAATAAGCTAGACTGGAGCCACAACACTGATGCTCGTTACAGGA
A.japonicaAnj-1	GAATAATAAACTGGACTGGACTGACAATACAAAGGCACTATATAAGA
A.japonicaAnj-2	GAATAATAAACTGGACTGGACTGACAATACAAATGCACTATATAAGA
A.japonicaAnj-3	GAATAATAAACTGGACTGGACTGACGATACAAATGCACTATATAAGA
T.newnesiRex1-1b	GAAGAATAAACTGGACTGGACTGATCATTCTGCTGCTCTGCACAAGA
T.newnesiRex1-1a	GAACAATAAACTGGAATGGACTGATAATTCTGCTGCTCTGTACAAGA
A.anguillaAna	GAATAATAAACTGAACTGGACTGACAATACAAAGGCACTATATAAGA
N.coriicepsRex1b	GAACAATAAACTGGACTGGACTGATAATTCTGCTGCTCTGTACAAGA
N.coriicepsRex1a	GAACAATAAACTGGACTGGACTGATAATTCTGCTGCTCTGTACAAGA
G.acuticepsRex1a	GAACAATAAACTGGACTGGCTGGACTGGACTGATAATTTTGCTGCTCTGTACAAGA
G.acuticepsRex1b	GAACAATAAACTGGACTGGACTGATAATTCTGCTGCTCTGTACAAGA
D.mawsoniRex1b	GAACAATGAACTGGACTGGACTGATAATTCTGCTGCTCTGTACAAGA
D.mawsoniRex1b	GAACAATAGACTGGACTGGACTGATAATTCTGCTGCTCTGTACAAGA
B.baikalensisorf12	GAACAATAAACTGGACTGGTCCGACCACGCGCATGCGCTTTATAAAA
B.baikalensisBab-1	GAACAATAAACTGGACTGGTCCGACCACGCACATGCACCCTATAAAA
B.baikalensisBab-2	GAACAATAAACTGGACTGGTCCGACCACGCACATGCACTTTATAAAA
0.latipesOrl-2	CAACAATAAACTGGACTGGTCACACAATACAGAAGCACTGTACAAAA
0.latipesOrl-4	CAACAATAAACTGGACTGGTCACACAATACAGAAGCACTGTACAAAA
	** *** * * *

	60	570	580
	-		
Rex1	AGGGAAA		
C.labridensCil-2	AGG-TC		
C.labridensCil-3	AGG-TC		
C.labridensCil-1	AGG-TC		
C.labridensCil-4	AGGGTC		
0.niloticusOrn-5	AGG-TC		
0.niloticusOrn-1	AGGGTC		
0.niloticusOrn-4	AGG-TC		
H.bimaculatusHeb-1	AGGTTC		
H.bimaculatusHeb-2	AGGGTC		
H.bimaculatusHeb-4	AGGTTC		
H.bimaculatusHeb-5	AGGGTC		
A.japonicaAnj-1	AAGGRC		
A.japonicaAnj-2	AAGGGA		
A.japonicaAnj-3	AAGGAC		
T.newnesiRex1-1b	AGGGAC		
T.newnesiRex1-1a	AGGGAC		
A.anguillaAna	AAGGAC		
N.coriicepsRex1b	AGGGAC		
N.coriicepsRexla	AGGGAC		
G.acuticepsRex1a	AGGGAC		
G.acuticepsRex1b	AGGGAC		
D.mawsoniRex1b	AGGGAC		
D.mawsoniRex1b	AGGGACC		
B.baikalensisorf12	AGGGACAGA	AGCAGACTCTI	ITCTGCTG
B.baikalensisBab-1	AGGGAC		
B.baikalensisBab-2	AGAGAC		
0.latipesOrl-2	AAGGAC		
0.latipesOrl-4	AAGGAC		

ANEXO V: Alinhamento da seqüência *Rex3* de *C. kelberi* com as das demais espécies de peixes da tabela 12, incluindo-se os gaps.

		10	20	30		40	50	60
	-							
Rex3				TI	TTTTT	TTTTTGG	GAGTCAACA	CACAGGAAAGA
0.niloticusOre3					-CCCA		GAAGGGAGAG	
0.niloticusOres					-CCCA		CAAGGGAGAGA	
0 niloticus0re4					-CCCA		GAAGGGGAGAG	CGGAGGGIGIG
C.labridensCic4					-CCCA	TCTTTAA	GAAGGGAGAGA	CGGAGGGTGTG
C.labridensCic2					-CCCA	TCTTTAA	GAAGGGAGAG	CGGAGGGTGTG
T.nigroviridisRex3	CCGCGG	GATTGG	CAGACCGO	GGTGGTGGI	CCCTC	TTTTTAA	GAAGGGGGA	CCGGAGGATGTG
T.nigroviridisRex3					TC'	TTTTTAA	GAAGGGGGA	CCGGAGGATGTG
E.luciTsEso2					-CCTC	TTTTTAA	GAAGGGGGA	CCGGAGGGTGTG
E.lucisEso4					-CCTC	TTTTTAA	GAAGGAGGA	CCGGAGGGTGTG
E.luciTsEso3					-CCTC	TTTTTAA	GAAGGGGGA	CCGGAGGGTGTG
B.baikalensisBot4					-CCCA	TCTTCAA	GAAGGGGGA	CCGGAGAGTGTG
X.helleriXih2					-CCCC	TGTTCAA	AAAGGGGGA	CCGGAGGGTGTG
P.mexicanaPom1					-CCCC	TGTTTAA	AAAGGGGGA	CCGGAGGGTGTG
P.mexicanaPom2					CCC	TGTTTAA	AAAGGGGGA	CCGGAGGGTGTG
P.formosaPof5					-CCCC	TGTTTAA	AAAGGGGGA	CCGGAGGGTGTG
P.formosaPoi3					-CCCC	TGTTTAAA	AAAGGGGGA	CGGAGGGTGTG
G.allinisGalliz					-ACCC	TGTTCAAA	AAAGGGGGGA	
D amatecDha?						TGTTCAA	AAAGGGGGGA	2-CGAGGGIGII
0 latipes0rv3							CARCECCER	CCCACCCTCTC
0.latipesOrv6					-CCCC	TCTTTAA	GAAGGGGGGA	CGGAGGGTGTG
H.bimaculataHet6					-CCCC	TGTTCAA	AAATGGGGA	CCGGAGGGTGTG
P.latipinnaPol2					-CCCC	TGTTTAA	AAAGGGGGA	CCGGAGGGTGTG
C.carpioCyp3					-CCTC	TTTTCAA	GAAGGGGGA	CCGGAGGGTGGG
						* **	* **	* *
		70	80 	90	-	100	110	120
Rex3	GTCCGA	CTTATT	GCCGGĊAA	TACGGACCA	AGCTC	rcgctgco	GTTGTACAC	GGACTGAATGG
O.niloticusOre3	TTCCAA	CTACAG	GGGG-TCA	ACACTCCTCA	GCCTC	CCTGGGA	AAGTCTATG	CCAGGGTGCTGG
O.niloticusOre5	TTCCAA	CTACAG	GGGGATCA	ACACTCCTCA	GCCTC	CCTGGGAA	AAGTCTATG	CAGGGTGCTGG
0.niloticusOrel	TTCCAA	CTACAG	GGGGATCA	ACACTCCTCA	-CCTC	CCTGGGA	AAGTCTATG	CAGGGTGCTGG
0.niloticusOre4	TTCCAA	CTATAG	GGGGATCA	ACACTCCTCA	GCCTC	CCTGGGA	AAGTCTATGO	CAGGGTGCTGG
C.labridensCic4	CTCCAA	CTTTCG	GGGGATCA	ACACTACTCA	GCCTC	CCCGGTA	AGGTCTATG	CAGGGTGCTGG
C.labridensCic2	CTCCAA	CT-TTC	GGGGATCA	ACACTCCTCA	GTCTC	CCCGGTA	AGGTGTATG	CAAGGTGCTGG
T.nigroviridisRex3	TTCCAA	CTATAG	GGGGGATCA	CACTCCTCA	GCCTC		AGGTCTATT	CAGGGGTACTGG
T.nigroviridiskex3	TTCCAA	CTATAG	GGGGATCA		GCCTC		AGGTCTATT	
E. LucisESO2	TTCCAR	CTATAG	GGGGGAICA		CCCTC		AGICIAIGO	
E luciTsEso3	TTCCAA	CTATAG	GGGGGAICF	CACTTCTC	GCCIC	CCCGGGA	AGICIAIG(CAGGGIACIGG
B.baikalensisBot4	CTCAAA	CTATCG	GGGTATCA	CACTACTCA	GCCTC	CCGGGAAA	AAGCTTATG	CAGGGTGCTGG
X.helleriXih2	CTCCAA	TTATAG	AGGGGTCA	CACTCTTAA	GCCTC	CCTGGCA	AGGTCTATT	CAGGGGTCCTGG
P.mexicanaPom1	CTCCAA	TAG	GGGG-TCA	ACACTCTTA	GCCTT	CCTGGTA	AGGTCTATT	CAGGGGTCCTGG
P.mexicanaPom2	CTCCAA	-TACAG	GGGGGTCI	ACACTCTTA	GCCTC	CCTGGTA	AGGTCTATT	CAGGGGTCCTGG
P.formosaPof5	CTCCAA	TTACAG	GGGGGTCA	CACTCTTAA	GCCTC	CCTGGTA	AGGTCTATT	CAGGGGTCCTGG
P.formosaPof3	CTCCAA	TTACAG	GGGGGTCA	CACTCTTAA	GCCTC	CCTGGTA	AGGTCTATT	CAGGGGTCCTGG
G.affinisGam2	CTCCAA	TTATAG	GGGGGGTCI	ACACTCTTAA	GCCTC	CCTGGCGA	AGGTCTATTO	GGGGGGTTCTGG
P.amatesPha4	CTCCAA	TTATAG.	AAGGGTCA	ACACTCTTAA	ACCTC	CCGGGCA	AGGTCTATT	LAGGGGTCCTGG
P.amatesPha2	CAA	A'I''I'ACAG	AGGGGTCA	ACAC'I'C'I''I'AA	GCCTC	CCTGGCAA	AGGTCTATT	LAGGGGTCCTGG
0.latipesOry3	TTCCAA	CCATAG	GGGAA'I''I'A	CACTCCTCA	GCCTC		AAGTCTATGO	CAGGGTACTGG
U.latipesory8	CTCCAA		GGGAAIIA		GCCIC		AAGICIAIGO	
P latipinnaPol2	CTCCAA	TTACAG	GGGGGGICF	CACICIIA	GCCIC	CTCCTA	AGGICIAIIC	AGGGGTICIGG
C.carpioCvp3	TTCCAA	CGACAG	GGGGATCA	CACTCCTCA	GCCTT	CCTGGGA	AAGTCTATG	CAGGGTACTGG
	*	,	*	** *	**	*	**	* * *
	130		140	150	16	0	170	180
		-		-	-	- ·		-
Rex3	CCCGCA	ACAATG	GGCCAGAC	CACCCCATAC	TCCCG	CAGCA	CCTCCCA(CAGGATACCCCG
O.niloticusOre3	AAAGGA	G-AGTT	CGTCCGTT	TAGTCGAACO	TCGGA	TACAGGA	GGAACAATGO	CGGTTTTCGTCC
O.niloticusOre5	AAAGGA	G-AGTT	CGTCCGT	AGTCGAACO	"ICGGA	L'ACAGGA	GAACAATG	JGGTTTTCGTCC
0.nlloticusOrel	AAAGGA	G-AGTT	CGTCCGT	TAGTCGAACC	TCGGA	TACAGGA	JGAACAA'I'G	JGGTTTTTCGTCC
C.labridersGis4	AAAGGA	G COMO	CGTCCGC'I	AGTEGAAC		IACAGGA(JGAACAA'I'G(
C labrideracia?	AAAGGA	re-cere	CGICCGI"I	AGICGAACC	TCGGA	TCCAGGA	AGAACAATG(
T.nigroviridisRex3	AGAGGA	AG-GGTC	CGCCGGAI	TAGTCGAACO	TCAGA	TTCAGGA	GGAGCAGTG	IGGTTTTCGTCC

T.nigroviridisRex3 AGAGGAG-GGTCCGCCGGATAGTCGAACCTCAGATTCAGGAGGAGCAGTGTGGTTTTCGTCC

AGAGGAG-AATACGGCCGATAGTAGAACCTCGGATTCAGGAGGAACAGTGTGGTTTTCGTCC

 ${\tt AGAGGAG-AATACGGCCGATAGTAGAACCTCGGATTCAGGAGGAACAGTGTGGTTTTCGTCC}$

E.luciTsEso2

E.lucisEso4

E.luciTsEso3 AGAGGAG-AATACGGCCGATAGTAGAACCTCGGATTCAGGAGGAACAGTGTGGTTTTCGTCC B.baikalensisBot4 AACGGAG-GCTCCGACCGTTTGTCGAACCTCGGATTCAAGAAGAACAGTGCGGGTTTCGTCC X.helleriXih2 AGAGGAG-GGTCCGTCGGATAGTTGAACCTCGGATTCAGGAAGAGCAGTGTGGTTTTCGTCC P.mexicanaPom1 AGAGGAG-GGTCCGGTCGGATAGTCGAACCTCGGATTCAGGAAGAGCAGTGTGGTTTTCGTCC P.mexicanaPom2 AGAGGAG-GGTCCGTCGGATAGTCGAACCTCGGATTCAGGAAGAGCAGTGTGGTTTTCGTCC P.formosaPof5 AGAGGAG-GGTCCGTCGGATAGTCGAACCTCGGATTCAGGAAGAGCAGTGTGGTTTTCGTCC P.formosaPof3 AGAGGAG-GGTCCGGTCGGATAGTCGAACCTCGGATTCAGGAAGAGCAGTGTGGTTTTCGTCC G.affinisGam2 AGAGGAG-GGTCCGTCGGATTGTCGAACCTCGGATTCAGGAAGAGCAGTGTGGTTTTCGTCC P.amatesPha4 AGAGGAG-GGTCCGTCAGATAGTCGAACCTCGGATTCAGGAAGAGCAGTGTGGTTTTCGTCC AGAGGAG-GGTCCGTCGGATAGTCGAACCTCGGATTCAGGAAGAGCAGTGTGGTTTTCGTCC P.amatesPha2 AGAGGAG-AGTCCGTCCGATAGTCGAACCTCGGATTCAGGGACAACAGTGCGGTTTCCGTCC 0.latipesOry3 0.latipesOrv6 AGAGGAG-AGTCCGTCCGATAGTCGAACCTCGGATTCAGGAACAACAGTGCGGTTTCTGTCC H.bimaculataHet6 AGAGGAG-GGTCCGGTCGGATAGTTGAACCTCGGATTCAGGAAGAGCAGTGTGGTTTTCGTCC P.latipinnaPol2 AGAGGAG-GGTCCGTCGGATAGTCGAACCTCGGATTCAGGAAGAGCAGTGTGGTTTTCGTCC C.carpioCyp3 AGAGGAG-AATTCAGCCGATAGTCGAACCTTGGATTCAGAAGGAACAATGCAGTTTTCGTCC * * 190 200 210 220 230 240 2 AGGGAGCGGTCGAATG--CCTTCTCCAAGTCCACA--AAACACATGTAGACTGGATGGGCAA Rex3 TGGTCGCGGAACACTGGACCAGCTCTTTATCCTCTCAAGGATACTTGAGGGTGCATGGGAGT O.niloticusOre3 O.niloticusOre5 TGGTCGCGGAACACTGGACCAGCTCTTTATCCTCTCGAGGATACTTGAGGGTGCATGGGAGT 0.niloticusOre1 TGGTCGCGGAACACTGGACCAGCTCTTTATCCTCTCAAGGATACTTGAGGGTGCATGGGAGT 0.niloticusOre4 TGGTCACGGAACACTGGACCAGCTCTTTATCCTCTCAACGATACTTGAGGGTGCATGGGAGT C.labridensCic4 TGGTCGTGGAACGCTGGACCAGCTCTTTGTCCTCTCGAGGATATTCGAGTATGTGTGGGGAGT C.labridensCic2 TGGTCGTGGAATGCTGGACCAGCTCTTTATCCTCTCAAGGATATTCGAGTGTGCGTGGAAGT T.nigroviridisRex3 TGGACGTGGAACAGTGGACCAGCTCTACACCCTCAGCAGGGTCCTTGAGGGTGCATGGGAGT T.nigroviridisRex3 TGGACGTGGAACAGTGGACCAGCTCTACACCCTCAGCAGGGTCCTAGAGGGTGCATGGGAGT GGGCCGTGGAACACTGGACCAGCTCTATACCCTCTACGGGGTGTTGGAGGGTTCATGGGAGT E.luciTsEso2 E.lucisEso4 GGGCCGTGGAACACTGGACCAGCTCTATACCCTCT-CGGGGTGTTGGAGGGTTCATGGGAGT E.luciTsEso3 GGGCCGTGGAACACTGGACCAGCTCTATACCCTCTACGGGGTGTTGGAGGGTTCATGGGAGT TGGTCGTGGAACAGTGGACCAGCTCTTTACCCTTGCAGGGATACTGGAGGGGTCCTGGGAGT B.baikalensisBot4 TGGTCGTGGAACACTGGACCAGCTCTACACCCTCGGCAGGGTCCTGGAGGGTGCATGGGAGT X.helleriXih2 TGGTCGTGGAACACTGGACCAGCTCTACACCCTCAGCAGGGTCCTGGAGGGTGCATGGGAGT P.mexicanaPom1 P.mexicanaPom2 TGGTCGTGGAACACTGGACCAGCTCTACACCCTCAGCAGGGTCCTGGAGGGTGCATGGGAGT TGGTCGTGGAACACTGGACCAGCTCTACACCCTCAGCAGGGTCCTGGAGGGTGCATGGGAGT P.formosaPof5 P.formosaPof3 TGGTCGTGGAACACTGGACCAGCTCTACACCCTCAGCAGGGTCCTGGAGGGTGCATGGGAGT G.affinisGam2 TGGTCGTGGAACACTGGACCAGCTCTACACCCTCAGCAGGGTCCTGGAGGGTGCATGGGAGT P.amatesPha4 TGGTCGTGGAACACTGGACCAGCTCTACACCCTCAGCAGGGTCCTGGAGGGTGCATGGGAGT P.amatesPha2 TGGTCGTGGAACAGTGGACCAGCTCTACACCCTATCTAGGGTGCTGGAGGGTTTGTGGGAGT 0.latipesOry3 TGGTCGTGGAACAGTGGACCAGCTCTACACCCTATCTAGGGTGCTGGAGGGTTTGTGGGAGT 0.latipesOrv6 H.bimaculataHet6 TGGTCGTGGAACACTGTACCAGCTTTACACCCTCAGCAGGATCCTGGAGGGTGCATGGGAGT P.latipinnaPol2 TGGTCGTGGAACACTGGACCAGCTCTACACCCTCAGCAGGGTCCTGGAGGGTGCATGGGAGT C.carpioCyp3 CGGTTATGGAACACTGGACCAGCTTTATACCCTCACCGGGGTACCGGAGGGTTCATGGGAGT * * * * * * ** * * ** 290 50 260 270 280 300 310 Rex3 ACTCCCACGCACACT-CAAATATCCTCGAGA---GGATAAAGAGCTGGTCCAGTGTTCCCGA 0.niloticusOre3 TTGCCCAACCAGTCTACATGTGTTTTGTGGACTTGGAGAAGGCATTCGACC-GTGTCCCT--0.niloticusOre5 TTGCCCAACCAGTCTACATGTGTTTTGTGGACTTGGAGAAGGCATTCGACC-GTGTCCCT--0.niloticusOre1 0.niloticusOre4 ${\tt TTGCCCAACCAGTCTACATGTGTTTTGTGGACTTGGAGAAGGCATTCGACC-GTGTCCCT--}$ C.labridensCic4 TTGCCCAACCAGTCTACATGTGCTTTGTGGACTTGGAGAAGGCATTCGACC-GCACCCC---C.labridensCic2 TTGCCCAACCAGTCTACATGTGCTTTGTGGACTTGGAGAAGGCATTTGACC-GTGTCCCT--T.nigroviridisRex3 TTGCCCAACCAATCCACATGTGTTTTGTGGATTTGGAGAAGGCATTCGACC-GTGTCCCT--T.nigroviridisRex3 TTGCCCAACCAATCCACATGTGTTTTGTGGATTTGGAGAAGGCATTCGACC-GTGTCCCT--E.luciTsEso2 E.lucisEso4 E.luciTsEso3 TTGCCCAACCAATCCACATGTGTTTTGTGGATTTGGAGAAAGCATTCGACT-GTGTCCCT--B.baikalensisBot4 TTGCCCAACCAGTCTACATGTGCTTTGTGGACTTGGAGAAGGCCTTCGACC-GGGTCCCT--X.helleriXih2 P.mexicanaPom1 -CGCCCAACCGGTCTACATGTGTTTCGTGGACTTGGAGAAGGCGTTCGACC-GTGTCCC--- ${\tt TCGCCCAACCGGTCTCCATGTGTTTTGTGGACCTTGGAGAAGGCGTTCGACC-GTGTCCCCC--}$ P.mexicanaPom2 P.formosaPof5 TCGCCCAACCGGTCTACATGTGTTTTGTGGACTTGGAGAAGGCGTTCGACC-GTGTCCCC--TCGCCCAACCGGTCTACATGTGTTTTGTGGA-TTGGAGAAGGCGTTCGACC-GTGTCCCC--P.formosaPof3 G.affinisGam2 P.amatesPha4 TCGCCCAACCAGTCTACATGTGTTTTGTGGACTTGGAGAAGGCGTTCGACC-GTGTCCCT--P.amatesPha2 TCGCCCAACCGGTCTACATGTGTTTTGTGGACTTGGAGAA-GCGTTCGACC-GTGTCCCT--TCGCTCATCCAGTCCATATGTGTTTTGTGGATTTGGAGAAGGCGTTCGACC-GCGTCCCC--0.latipesOry3 0.latipesOry6 TCGCTCATCCAGTCCATATGTGTTTTGTGGATTTGGAGAAGGCGTTCGACC-GCATCCCC--TTGCCCAACCAGTCTACATGTGTTTTGTGGACTTGGAGAAGGCGTTCGACC-GTATCCCT--H.bimaculataHet6 P.latipinnaPol2 TCGCCCAACCGGTCTACATGTGTTTTGTGGACTTGGAGAAGGCGTTCAACC-GTGTCCCC--C.carpioCyp3 ${\tt TTGCCCAACCAATCCACATGTGTTTTGTGGATTTGGAGAAGGCATTCGACC-ATGTCCCT--CTGTCCCT--CTGTCCCT--CTGTCCCT--CTGTCCCT--CTGTCCCT--CTGTCCCT--CTGTCCCT--CTGTCCCACCATTCGACCATTTCGACCATTCGACATTCGACCATTCGACCATTCGACCATTCGACCATTCGACATTCGACATTCGACCATTCGACATTCGACATTCGACATTCGACATTCGACATTCGACATTCGACATTCGACATTCGACATTCGACATTCGACATTCGACATTCGACATTCGACCATTCGACATTCCATTCGACATTCGACATTCGACCATTCGACATTCGACCATTCCATTCCATTCGAC$ * ** * * * * * * *** ** * * *

320	330	340	350	360	370

96

Pov3	
0 miletiawa0me2	
0.IIIIoticusores	
0.niloticusore5	-CGGGGTGTCCTGTGGGAGGTGTTGCGGGAGTATGGGGTGTCTGGCCCATTGCTACGGGCCA
0.niloticusOrel	-CGGGGCGTCCTGTGGGAGGTGTTGCAGGAGTATGGGGT-TCTGGCCCATTGCTACGGGCCA
0.niloticusOre4	-CGGGGTGTCCTGTGGGAGGTGCTGCCGGGAGTATGGGGTGTCTGGCCCATTGCTACGGGCCG
C.labridensCic4	ATACTGCAGGAGCATGGGGTGTCTGGCCCGTTGTTGCGGGCCA
C.labridensCic2	-CG
T.nigroviridisRex3	-CGGGGAGTCCTCTGGGGGGGTACTCCGGGAGTATGGAGTGTCGGGCCTCCTGTTACAGGCTG
T.nigroviridisRex3	-CGGGGAGTCCTCTGGGGGGGTACTCCGGGAGTATGGAGTGTCGGGCCACCTGTTACAGGCTG
E.luciTsEso2	-CGCGGCATCTTGTGGAGGGTGCTTCGGGAATATGGGGTCCTGGGTCCTTTGCTAAGGGCTG
F lucisFeo4	
E lugiTaFao3	
D heikelengisDet4	
B.DalkalensisBot4	
X.helleriXin2	-CGGGGAGCCCTGTGGGGGGTTCTCCCGGGAGTATGGGGTACCGGGCCCTTTGATACGGGCTG
P.mexicanaPom1	-AGGGGGGCCTTGTGGGGGGTTCTCCGGGAGTATGGGGTACCGGGCCCTTTGATACGGGCTG
P.mexicanaPom2	-AGGGGGGCCTTGTGGGGGGGTTCTCCGGGAGTATGGGGTACCGGGCCCTTTGATACGGGCTG
P.formosaPof5	-AGGGGGGCTTTGTGGGGGGTTCTCCGGGAGTATGGGGTATCGGGCTCTTTGATACGGGCTG
P.formosaPof3	-AGGGGGGCCTTGTGG-GGGTTCTCCGGGAGTATGGGGTACCGGGCCCTTTGATATGGGCTG
G.affinisGam2	-CGGGGAGCCCTGTGGGAGGCTCTCCCGGGAGTATGGGGTACCGGGCTCTTTGATACGGGCTG
P.amatesPha4	-CGGGGAGCCCTGTGGGGAGTTCTCCGGGAGTATGGGGTACCGGGCCCTTTGATACGGGCTG
P amatesPha?	
0 latipecory?	
0.latipesory5	
0.lacipesory6	
H.DIMACULATAHET6	-CTGGGAGCCCTGTGGGGGGTTCTCCCGGGAGTATGGGGTACCGGGCCCTTTGATACTGGCTG
P.latipinnaPol2	-AGGGGGGCCTTGTGGGGGGTTCTCCGGGAGTATGGGGTACCGGGCCCTTTGATATGGGCTG
C.carpioCyp3	-CGTGGCCTCCTGTTGGGGGGGGCCCCCGGGGGGTCCGGGGCCCCTCTGTTAAGGGCTG
	** ** ** *
	380 390 400 410 420 430
Dox2	
Rex5	
0.niloticusore3	TT-CGATCCCTAT-ACAACCGTTGCAAG-AGTTTGGTTCGCATTGCCGGCAATAAG
0.niloticusOre5	TT-CGATCCCTAT-ACAACCGTTGTAAG-AGTTTGGTTCGCATTGCTGGCAATAAG
0.niloticusOrel	TT-TGATCCCTAT-ACAACCGTTGCAAG-AGTTTGGTTCGCATAGCCAGCAATAAG
0.niloticusOre4	TT-CGATCCCTAT-ACAACCGTTGCAAG-AGCTTGGTTCGCATTGCCGTCAATAAG
C.labridensCic4	TT-CAGTCCCTGT-ACAACCGCAGTGAG-AGCTTGGTCGGTATAGCCAGCAATAAG
C.labridensCic2	TT-CAGTCCTTGT-ACAACCGCAGTGAG-AGCTTGGTCCGTATAGCCAGTAATAAG
T.nigroviridisRex3	TC-CGCTCTCTGT-ACAACCGGTGTCAG-AGCTTGGTCCGCATTGCCGGCAGTAAG
T.nigroviridisRex3	
F luciTeFeo2	
E lugicEgo4	
E.luciiseso3	TC-AGGTCCCTGT-ACAACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG
B.baikalensisBot4	TC-CGGTCTCTGT-ACG-CCGCAGTAGG-AGCTGTGTTCGTATCCTCGGCAGTAA
X.helleriXih2	TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG
P.mexicanaPom1	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG
P.mexicanaPom2	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG
P.formosaPof5	
P.iormosaPoi3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG
P.formosaPof3 G.affinisGam2	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCAGCAGTAAG
P.formosaPof3 G.affinisGam2 P.amatesPha4	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCAGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG
P.formosaPol3 G.affinisGam2 P.amatesPha4 P.amatesPha2	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG
P.tormosaPo13 G.affinisGam2 P.amatesPha4 P.amatesPha2	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCCATTGCCGGCAATAAG
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTTGCGTCCGCATTGCCGGCAATAAG
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAGG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTAT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAATAGG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTAT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTTGGTCCGCATAGCCGGCAGTAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGGAGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTTGGTCCGCATAGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGGAGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTACATG * * * * * * * * * * * * * * * * * * *
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGAGTAGG-AGTCTGGTCCGCATAGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGGTGTCAG-AGTCTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGAGGCAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTACATG * * * * * * * * * * * * * * * * * * *
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCTCTGT-ACGACCGGAGTAGG-AGTCTGGTCCGCATGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCAGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTTAGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTAGCATTGCCGGCAGTACATG * * * * * *
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAATAGG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CAGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTACATG * * * * * * 440 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGAGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCAGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCAGCATTGCCGGCAGTAA-G TC-CGGTCCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCAGCATTGCCGGCAGTAA-G TC-CGGTCCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCAGCATTGCCGGCAGTACATG * * * 440 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATAGCCGGCAATAAG TC-CGGTCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGGTGTCAG-AGTCTGGTCCGCATAGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGGAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGAGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCAGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGAGCAGG-AGCTTGGTCAGCATTGCCGGCAGTACATG * * * * * * * * * * * * * * * * * * *
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre5	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ACGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGGAGTAGCAGCAGCAGCAGCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTTAGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGAAGCAGCAGCAGCAGCAGCACGCACTTGCCGGCAGTACATG * * * * * * 440 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre5 O.niloticusOre1	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CAGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCACAATAAG TC-CGGTCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTACATG * * * * * * 440 450 460 470 480 490 -
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre5 O.niloticusOre1 O.niloticusOre1	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGAGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTACATG * * * * 440 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre3 O.niloticusOre1 O.niloticusOre4	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTTGGTCCGCATAGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATAGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAGAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAGGTGCAG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCCGTG-AGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTACATG * * * * * * * 440 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre5 O.niloticusOre1 O.niloticusOre4 C.labridensCic4	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAATAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTTAGCATTGCCGGCAGTACATG * * * * 440 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 D.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre3 O.niloticusOre1 O.niloticusOre4 C.labridensCic2	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CAGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGAGAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTACATG * * * * 440 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre5 O.niloticusOre1 O.niloticusOre1 O.niloticusOre1 C.labridensCic4 C.labridensCic2 T.nigroviridisRex3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAGTGCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCAGCATTGCCGGCAGTACAGG * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre3 O.niloticusOre1 O.niloticusOre1 O.niloticusOre4 C.labridensCic2 T.nigroviridisRex3 T.nigroviridisRex3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAATAA-G TC-CGGTCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATAGCCGGCAGTAA-G TC-CAGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTTAGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTTAGCATTGCCGGCAGTACATG * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre5 O.niloticusOre1 O.niloticusOre4 C.labridensCic4 C.labridensCic2 T.nigroviridisRex3 T.nigroviridisRex3 E.luciTsEso2	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-AGGTCCCTGT-ACGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAATAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-CGGTCCCTGT-ACGACCGAGGAGCAGCAGCAGCAGCACGCCGCAGTACATG * * * * * * * 440 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre4 O.niloticusOre1 O.niloticusOre4 C.labridensCic2 T.nigroviridisRex3 T.nigroviridisRex3 E.luciTsEso2 E.lucisEso4	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CAGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGAGTAGGCAGCAGCACGCCGCTTGCCGCAGGACGAGTAA-G TC-CGGTCCCTGT-ATGACCGAAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTACATG * * * * * * * 440 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre5 O.niloticusOre1 O.niloticusOre1 C.labridensCic4 C.labridensCic2 T.nigroviridisRex3 E.luciTsEso2 E.luciTsEso3	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGAGTAGGAGAGAGG-AGCTTGGTCCGCATTGCCGGCAGTACATG * * * * * * * 440 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre3 O.niloticusOre1 O.niloticusOre1 O.niloticusOre4 C.labridensCic2 T.nigroviridisRex3 T.nigroviridisRex3 E.luciTsEso2 E.luciSeso4 E.luciTsEso3 B.baikalensisBot4	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTTGGTCCGCATAGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTTAGCATTGCCGGCAGTAA-G TC-CGGTCCCCTGT-ATGACCGAAGCAGC-AGCTTGGTTAGCATTGCCGGCAGTAA-G TC-CGGTCCCCTGT-ATGACCGGAGCAGGCAGC-AGCTCGCCGCCGGCAGTACATG * * * * 440 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre4 O.niloticusOre4 C.labridensCic4 C.labridensCic4 C.labridensCic2 T.nigroviridisRex3 E.luciTsEso2 E.luciTsEso3 B.baikalensisBot4 V.ballerivib2	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAATAAG TC-AGGTCCCTGT-ACGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAATAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAAG TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGAGCAGG-AGCTTGGTTAGCATTGCCGGCAGTACATG *
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre4 O.niloticusOre4 O.niloticusOre4 C.labridensCic4 C.labridensCic2 T.nigroviridisRex3 E.luciTsEso2 E.luciTsEso3 B.baikalensisBot4 X.helleriXih2	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTACATG * * * * * * * * A40 450 460 470 480 490
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre5 O.niloticusOre1 O.niloticusOre1 C.labridensCic4 C.labridensCic2 T.nigroviridisRex3 E.luciTsEso2 E.luciTsEso3 B.baikalensisBot4 X.helleriXih2 P.mexicanaPom1	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAATAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCCCTGT-ATGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTACATG * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
P.formosaPof3 G.affinisGam2 P.amatesPha4 P.amatesPha2 O.latipesOry3 O.latipesOry6 H.bimaculataHet6 P.latipinnaPol2 C.carpioCyp3 Rex3 O.niloticusOre3 O.niloticusOre3 O.niloticusOre1 O.niloticusOre1 C.labridensCic4 C.labridensCic4 C.labridensCic2 T.nigroviridisRex3 E.luciTsEso2 E.luciSeso4 E.luciTsEso3 B.baikalensisBot4 X.helleriXih2 P.mexicanaPom1 P.mexicanaPom2	TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ACGACCGGTGTCAG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-CGGTCTCTGT-ATGACCGGAGTAGG-AGTTGGTCCGCATTGCCGGCAATAA-G TC-CGGTCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATAGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGTCTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGG-AGCTTGGTCCGCATTGCCGGCAGTAA-G TC-AGGTCCCTGT-ATGACCGGAGTAGCAGG-AGCTTGGTCCGCATTGCCGGCAGTACATG * * * * TC-CGGTCCCCTGT-ATGACCGGTGGTGAGGGGACCACCACCACCCCCGTTGAA

P.formosaPof3	TCGGGCTCAT-TTCCGGTGAGAGTTGGACTC
G.affinisGam2	TCGGGCTCGT-TTCCGGTGAGAGTTGGACTC
P.amatesPha4	TCGGGCTCAT-TTCCGGTGAGAGTTGGACTC
P.amatesPha2	TCGGGCTCGT-TTCCGGTGAGAGTTGGACTC
0.latipesOry3	TCAGACCTGT-TCCCGGTCCACGTTGGACTC
0.latipesOry6	TCAGACCTGT-TCCCGGTCCACGTTGGACTC
H.bimaculataHet6	TCGGGCTCGT-TTCCGGTGAGAGTTGGACTC
P.latipinnaPol2	TCGGGCTTGT-TTCCGGTGAGAGTTGGACTT
C.carpioCyp3	TTGGACTC
	500
Rex3	
O.niloticusOre3	
O.niloticusOre5	
0.niloticusOre1	
O.niloticusOre4	
C.labridensCic4	
C.labridensCic2	
T.nigroviridisRex3	G
T.nigroviridisRex3	GTTCATAACTTTT
E.luciTsEso2	
E.lucisEso4	
E.luciTsEso3	
B.baikalensisBot4	
X.helleriXih2	
P.mexicanaPom1	
P.mexicanaPom2	
P.formosaPof5	
P.formosaPof3	
G.affinisGam2	
P.amatesPha4	
P.amatesPha2	
0.latipesOry3	
0.latipesOry6	
H.bimaculataHet6	
P.latipinnaPol2	
C.carpioCyp3	

		10	20		30		40	5	50	60
Rex6		-	 דידידים מממידיידים		 3GAGCTC		CCAAG	 TGCTG0	 2027772	
C.labridensCla2										
O.niloticTsOni2										
0.nloticus0ni1										
C.labridensCla1										
P.formosaPfo2_										
P.formosaPho4										
P.formosaPho6										
H.bimaculataHbi2										
H.bimaculataHbi4										
G.affinsGaf2										
G.affinisGaf3										
P.gracilisPgr3 P.gracilisPgr2										
P.gracilisPgr1										
0.latipes0la5										
0.latipesOla3										
X.maculatusXma5										
X.maculatusXma2										
T.rubripesdmd										·
		70	0.0		0.0	1.0	0	110	`	1.2.0
			- -		90 	-			, 	120
Rexб	CATTG	TGCCGA	IGCTGGAA	GGTCCC	CAGATCA	AAT	GGATA	cgccco	CCAAAA	GTG-TTGAG
C.labridensCla2			CTGGAA	GT-CCC	GAGGTCA	AAATG	GGACA	CGCCCC	CCAAGG	GTGGTTGAG
0.niloticTsOni2			CTGGAA	GT-CCT	GAGGTCA	AAATG	GGAGA	CGCCCC		GTGGTGGAG
0.niloticusOnii			CIGGAA CTGGAA	GCCC	GAGGICA AAGATCA	AAAIG	GGAGA	.CGCCCC	ACAGGG	GIGGIGGAG
C.labridensCla1			CTAGAA	GT-CCT	GAGGTCA	AAATG	GGATT	TGCCCC	CACGO	GTGGT
P.formosaPfo2_			CTGGAA	AC-CCC	GAGGTCA	AAATG	GGGGA	CACCC	CCAAAG	GTGGTGGAG
P.formosaPho4			CTGGAA	GC-CCC	GAGGTCA	AAATG	GGGGA	CACCCC		GTGGTGGAG
H.bimaculataHbi6			CIGGAA CTGGAA	GC-CCC	GAGGICA	GAAAIG	GGGGAA	CACCCC	CAAAG	GIGGIGGAG
H.bimaculataHbi2			CTGGAA	GC-CCC	GAGATCO	GAAGTG	GGGAA	CACCCC	CAAAG	GTGGTGGAG
H.bimaculataHbi4			CTGGAA	GC-CCC	GAGATCO	GAAGTG	GGGAA	CACCC	CAAAG	GTGGCGGAG
G.affinsGaf2			CTGGAA		AAGATCA	AAGTG	GGAAA	CACCCC	CGAAG	GTAGTGGAG
P.gracilisPgr3			CTGGAA	AC-CCC	GAGATCA	AAGTG	GGAAA	CACCCC	CAAAG	GTGGTGGAG
P.gracilisPgr2			CTGGAA	AC-CCC	GAGATCA	AAAGTG	GGAAA	CACCCO	CCAAAG	GTGGTGGAG
P.gracilisPgr1			CTGGAA	AC-CCC	GAGATCA	AAGTG	GGAAA	CACCC	CAAAG	GTGGTGGAG
0.latipes0la3			CTGGAA CTG-AA	AC-CCC.	AAGGTCA	AAAATG AAAATG	GGACA	CACCTO		GIGGIAGAG
0.latipesOla1			-CCTG-AA	AC-CCC	AAGGTCA	AAATG	GGAAA	CACCTO	CCGAAG	GTGGTAGAG
X.maculatusXma5			CTGGAA	AC-CCC	GGGATCA	AAAGTG	GGAAA	CACCC	CCAAAG	GTGGCGGAG
X.maculatusXma2			CTGGAA	AC-CCT	GAGATCA	AAGTG	GGAAA	CACCCO	CAAAG	GTGGCGGAG
1.rubripesalla										
	13	0	140	15	0	160		170		180
				-	-	-	-			-
Rex6 C labridencCla2	A-CAA	CGAGGC	TAAGATC-	TGTGGG. TCTCCC	A-TTCCA	AGATAC	AGACA	GATAGA	ACTTGI	GATGGCGAA
0.niloticusOni2	AATAA	CCAGAGC	TAAGATCC	TGTGGG	ACTTCCA	GATAC	AGACA	CACAAA	ATGGI	GGTGGCTAA
0.nloticTsOni1	AATGA	CCGAGC	TAAGATCC	TGTGGG	ACTTCCA	AGATAC	AGACA	GACAAA	ATGCI	GGTGGCTAA
0.niloticusOni3	AATGA	CCGAGC	TAAGATCC	TGTGGG	ACTTCCA	GATAC	AGACG	GACAAA	ATGGI	'GGTGGCTAA
C.labridensClal	AATGA	C'I'GAGC'	L'AAGACCC'	TGAGGG'	I'C'I''I'C- <i>F</i>	AGATAC	AGATG	GACAAA	AC'I'GG'I	GATGGCTAA
P.formosaPho4	AATGA	CCGAGC	TAAGATCC'	TGTGGG	ACTTCCA	AGATCC	AGACA	GACAAC	GTGGI	AATGGCGAA
P.formosaPho6	AATGA	CCGAGC	TAAGATCC	TGTGGG	ACTTCCA	AGATCC	AGACA	GACAAC	GATGGT	AATGGCGAA
H.bimaculataHbi6	AATGO	CCGAGC	TAAGATCC	TGTGGG	ACTTCCA	GATCC	AGACA	GACAAA	ATGGT	'AATGGCGAA
H.bimaculataHbi2	AA'I'GA	CCGAGC	TAAGA'I'CC' TAAGATCC'	TGTGGG	ACTTCCZ ACTTCCZ	AGATCC	AGACA	GACAAA	λATGGT λATTGT	AATGGCGAA
G.affinsGaf2	AATGA	CCGAGC	TAAGATCC	TGTGGG	ACTTCCA	AGATCC	AGACA	GACAAA	ATGGI	GAGGGGCGAA
G.affinisGaf3	AATGC	CAGAGC	TAAGATCC'	TGTGGG	ACTTCCA	AATCC	AGACA	GACAGA	ATGGT	AATGGCAAA
P.gracilisPgr3	AATGO	CAGAGC	TAAGATCC	TGTGGG	ACTTCCA	GATCC	AGACA	GACAGA	ATGGT	AATGGCGAA
P.gracilisPgr2	AATGO	CAGAGC	L'AAGATCC' FAAGATCC'	TGTCCC	ACTTCCA	AGATCC	AGACA	GACAGA	A'I'GGT	AATGGCGAA
0.latipesOla5	AATGA	GAGGGC.	AAAGATCC	TGTGGG	ACTTCCA	AGATTC	AGACT	GATAGO	ATTGI	AATGGCAAA
0.latipesOla3	AATGA	GAGGGC	AAAGATCC	TGTGGG	ACTTCCA	GATCC	AGACT	GATAG	ATGGT	AATGGCAAA

AATGAGAGGGCAAAGATCCTGTGGGACTTCCAGATCCAGACTGATAGGATGGTAATGGAGAA

0.latipes0la1

ANEXO VI: Alinhamento da seqüência *Rex6* de *C. kelberi* com as das demais espécies de peixes da tabela 13, incluindo-se os gaps.

----CATGG---TCCAGATCCAGACTGACAAGATGATGGTCGCCAA T.rubripesdmd ** * ** *** * * 200 210 220 230 240 2 CCAACCGGACATCGTAGTGGTGGACAAACAAGGGAAGACAGTCGTAG-----TGATAG Rex6 CCAACCGGACATCGTAGTGGTGGACAAACAAAGGAAGAAGTCGTGG-----TGATAG C.labridensCla2 CCAACCGGACATAGTGGTGGAAGAGAAGAAGAAGAAGAAGATGGCTGTAG-----TGATAG 0.niloticusOni2 O.nioticusOni1 CCAACCGGACATAGTGGTGGTAGACAAACAGAAGAAGACGGCCGTAG-----TGATCG CCAACCAGACAT-----AGACAAATAGAAGAAGACGTCTGTAG-----TGTTAG O.niloticTsOni3 C.labridensCla1 CCAACCGGACATC--CGTAGTG-----TGATAG P.formosaPfo2 CCAACCGGACATTGTGGTGGTGGATAAAGAACAGAGGAAAGCCGTTG-----TGGTGG CCAACCGGACATTGTGGTGGTGGATAAAGAACAGAGGAAAGCCGTTG-----TGGTGG P.formosaPho4 P.formosaPho6 CCAACCGGACATTGTGGTGGTGGATAAAGAACAGAGGAAAGCCGTTG-----TGGTGG H.bimaculataHbi6 CCAACCGGACATTGTGGTGGTGGATAAAGAACAGAGGGAAGCCGTTG-----TGGTGG H.bimaculataHbi2 CCAACCGGACATTGTGGTGGTGGATAAAGAACAGAGGAAAGCCGTTG-----TGGTGG H.bimaculataHbi4 CCAACCGGACATTGTGGTGGTGGTGGATAAAGAACAGAGGAAAGCCGTTG------TGGTGG CCAACCAGACATAGTCGTGGTGGATAAACAACAGAGGAAAGCCGTTG-----TGGTGG G.affinsGaf2 CCAACCAGACATTGTCGTAGTGGACAAACAACAGAGGAAAGCCGTTG-----TGGTAG G.affinisGaf3 CCAACCAGACATTGTCGTAGTGGACAAACAACAGAGGAAAGCCGTTG-----TGGTAG P.gracilisPgr3 P.gracilisPgr2 CCAACCAGACATTGTCGTAGTGGACAAACAACAGAGGAAAGCCGTTG-----TGGTAG P.gracilisPgr1 CCAACCAGACATTGTCGTAGTGGACAAACAACAGAGGAAAGCCGTTG-----TGGTAG CCAACCAGACATTGTTGTGGTGGATAAAGAACAGAGGAAAGCCGTTG-----TGGTGG 0.latipes0la5 CCAACCAGACATTGTAGTGGTGGATAAAGAACAGAGGAAAGCCGTTG-----TGGTGG 0.latipesOla3 0.latipes0la1 CCAACCAGACATTGTAGTGGTGGATAAAGAACAGAGGAAAGCCGTTG-----TGGTGG X.maculatTsXma5 CCAACCAGACATTGTCGTAGTGGATAAACAACAGAGGAAAGCCGTTG-----TGATAG CCAACCAGACATTGTCGTAGTGGATAAACAACAGAGGAAAGCCGTTG-----TGATAG X.maculatTsXma2 CCAGCCTGACATAGTGGTGGTGAATAAACACCGGAAGATATATGTAGCAACACCGGTGATAT T.rubripesdmd *** ** **** ** * 270 280 290 300 260 310 Rex6 ACGTTGCGATACCAAGTGACGGCAACATCAGGAAGAAGGAACATGAGAAGCTTGATAAATAC C.labridensCla2 ACATTGCAATACCAAGTGACAGGAACATCAAGAAGAAGGAACACGAGAAGCTTGACAAATAC O.niloticusOni2 ATGTAGCAGTTCCGAATGACAGCAACAT-AGAAAGAAGGAACACGAGAAGCTGGAGAAATAC O.nloticusOni1 ATGTAGCGGTTCCGAATGACAGCAATATCAGGAAGAAGGAACACGAGAAGCTGGAGAAATGC ATGTAGC-GTTCCAAATGACAGCAACATCAGGAAGAAGGAACATGAGAAGCTTGAAAAATAC O.niloticusOni3 C.labridensCla1 ACGTAGCAATACCAAGCGAAAGTAACATCAAGACGAAGGAACACGAGAAGCTG-----C ATGTAGCAATACCAAGTGACCACAACATCAGGAAAAAGGAGCATGAGAAAACTGGAGAAATAC P.formosaPfo2_ P.formosaPho4 ATGTAGCAATACCAAGTGACCACCAACATCAGGAAAAAGGAGCATGAGAAACTGGAGAAATAC P.formosaPho6 ATGTAGCAATACCAAGTGACCACAACATCAGGAAAAAGGAGCATGAGAAAACTGGAGAAATAC H.bimaculataHbi6 ATGTAGCAATACCAAGTGACCAACAACATCAGGAAAAAGGAGCATGAGAAAACTGGAGAAAATAC H.bimaculataHbi2 ATGTAGCAATACCAAGTGACCAACATCAGGACAAAGGAGCATGAGAAACTGGAGAAATAC H.bimaculataHbi4 ATGTAGCAATACCAAGTGACCACAACATCAGGAAAAAGGAGCATGAGAAAACTGGAGAAATAC G.affinsGaf2 ATGTGGCAATACCAAGTGACTGCAACATCAGGAAAAAGGAGCATGAAAAACTAGAGAAATAC G.affinisGaf3 ATGTAGCAATACCAAGCGATTGCAACATCAGGAAAAAGGAGCACGAGAAACTGGAGAAATAC P.gracilisPgr3 ATGTAGCAATACCAAGCGATTTCAACATCAGGAAAAAGGAGCACGAGAAACTGGAGAAATAC P.gracilisPgr2 ATGTAGCAATACCAAGTGATTGCAACATCAGGAAAAAGGAGCACGAGAAACTGGAGAAATAC P.gracilisPgr1 ATGTAGCAATACCAAGCGATTGCAACATCAGGAAAAAGGAGCACGAGAAACTGGAGAAATAC 0.latipes0la5 ATGTGGCAGTGCCAAGCGATGGAAACATCAGGAAGAAGGAACATGAGAAACTGGAGAAATAC 0.latipesOla3 ATGTGGCAGTGCCAAGCGATGGAAACATCAGGAAGAAGGAACATGAGAAACTGGAGAAATAC 0.latipes0la1 ATGTGGCAGTACCAAGCGATGGGAACATCAGGAAAAAGGAACAGGAGAAACTGGAGAAAATAC X.maculatusXma5 ATGTAGCAATACCAAGCGACTGCAACATCAGGAAAAAGGAGCACGAGAAACTAGAGAAATAC ATGTAGCAATACCAAGCGACTGCAACATCAGGAAAAAGGAGCACGAGAAACTAGAGAAATAC X.maculatusXma2 T.rubripesdmd ATGTAGCAATCCCGAGTGATAGCAACATCAGGAAGAAGGAACACGAGAAGCTGGAGAAGTAC * * * * * * * * * ** ** * * **** ** ** **

	320	330	340	350	360	370
		-	-	-	·	
Rex6	CAAGGGCTCAGAGA	AGAACTGGA	AAGGATGTGG.	AAAATGAAGGI	GACAGTGGT	CCCCGTGGT
C.labridensCla2	CTAGGGCTCAGAGA	AGCAGCTGGA	AAGGATGTGG.	AAGATGAAGGC	AACAGTGGT	CCCCGTGGT
0.niloticusOni2	CAAGGGCTCAGAGA	AGAGCTCGA	GAGGACGTGG	AGGGTGAAGGI	AACGGTGG7	CCCCGTGGT
O.nloticusOni1	CAAGGGCTCAGAGA	AGAGCTCGA	GAGGATGTGG.	AGGGTGAAGGI	AACCGTGGT	CCCCGTGGT
O.niloticusOni3	CAAGGGCTCAGAGA	AGAGCTTGA	GAAGATGTGG.	AGGGTGAAGGI	GACGGTGGT	CCCAGTGGT
C.labridensCla1	CAAGGGCTGAGAGA	AGAGCTAGA	GAGGATGTGA	AAGGTGAAGGC	AACAGTGG?	CCCCGTGGT
P.formosaPfo2_	CAGGGCCTCAGAGA	AGGAACTGGA	GAAGGCCTGG.	AAGGTGAAGAC	CACAGTGGT	GCCTGTGGT
P.formosaPho4	CAGGGCCTCAGAGA	AGGAACTGGA	GAAGGCCTGG.	ATGGTGAAGAC	CACAGTGGT	GCCTGTGGT
P.formosaPho6	CAGGGCCTCAGAGA	AGGAACTGGA	GAAGGCCTGG.	AAGGTGAAGAC	CACAGTGG?	IGCCTGTGGT
H.bimaculataHbi6	CAGGGCCTCAGAGA	AGGAACTGGA	AAAGACCTGG.	AAGGTGAAGAC	CACAGTGGT	GCCTGTGGT
H.bimaculataHbi2	CAGGGCCTCAGAGA	AGGAACTGGA	AAAGACCTGG.	AAGGTGAAGAC	CACAGTGGT	GCCTGTGGT
H.bimaculataHbi4	CAGGGCCTCAGAGA	AGGAACTGGA	AAAGACCTGG.	AAGGTGAAGAC	CACAGTGG	IGCCTGTGGT
G.affinsGaf2	CAGGGCCTAAGGG	AGGAACTGGA	GAGGGCCTGG.	AAGGTGAAGAC	CACAGTGGT	GCCTGTGGT

G.affinisGaf3 CAGGGCCTTAGGGAGGAACTGGAGGGGCCTGGAAGGTGAAGACCACAGTGGTGCCTGTGGT P.gracilisPgr3 CAGGGCCTTAGGGAGGAACTGGAGGGGCCTGGAAGGTGAAGACCACAGTGGTGCCTGTGGT CAGGGCCTTAGGGAGGAACTGGAGGGGCCTGGAAGGTGAAGACCACAGTGGTGCCTGTGGT P.gracilisPgr2 P.gracilisPgr1 CAGGGCCTTAGGGAGGAACTGGAGAGGGCCTGGAAAGTGAAGACCACAGTGGTGCCTGTGGT 0.latipes0la5 CAGGGACTCAGAGAAGAACTGGAGAAAGCATGGAAAGTGAAGGTGACAGTGGTGCCTGTGGT CAGGGACTCAGAGAAGAACTGGAGAAAGCCTGGAAAGTGAAGGTGACAGTGGTGCCTGTGGT 0.latipes0la3 0.latipes0la1 CAGGGGCTCAGAGAAGAACTGGAGAAAGCATGGAAAGTGAAGGTGACAGTGGTGCCTGTGGT CAGGGCCTCAGGAGGACTGGAGAGGGCCTGGAAGGTGAAGACCACAGTGGTGCCTGTGGT X.maculatusXma5 X.maculatusXma2 CAGGGCCTCAGGGAGGAACTGGAGAGGGCCTGGAAGGTGAAGACCACAGTGGTGCCTGTGGT CAAGGGCTGA-----TGGAGAGGATGTGGGGGATGAAGGCAACAGTGGTCCCAGTGGT T.rubripesdmd ** ** * * ** * * * * * * * * ** **** ** **** 380 390 400 410 420 430 -- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ----AATTGGAACACTCGGGGGCAGTGACCCCCAA----GTGGCTACAGCAGATTCCTGGAA Rex6 C.labridensCla2 AATCGGAACACTCGGGGCAGTGACCCCCAAGTTGGGAGAGTGGCTCCAGCAGATTCCTGGAA AATCGGAGCACTAGGTGCGGTGACTCCCAAGCTAGGCGAGTGGCTCCAGCAGATCCCGGGAA 0.niloticus0ni2 0.nloticusOni1 AATCGGAGCACTAGGTGCAGTGACCTCCAAGCTAATCAAGTGGCTCCAGCAGATCCCAGGAT AATCAGAACACTAGGTGTGTTGACTCCCAAGCTAGACGAGTGGCTCCAGCAGATCCCAGGAA O.niloticusOni3 C.labridensCla1 AATCGGAACCCTCGAGGCAATGACCCCCAAACTAGAACAGTGGTTCCAGGAGATTCCAGGAA CATCGGGGCCCTCGGGGCAGTCACCCCCAAACTGGAGCAGTGGCTCAAACAGATCCCAGGAA P.formosaPfo2 P.formosaPho4 CATCGGGGCCCTCGGGGCAGTCACCCCCAAACTGGAGCAGTGGCTCAAACAGATCCCAGGAA P.formosaPho6 CATCGGGGCCCTCGGGGCAGTCACCCCCAAACTGGAGCAGTGGCTCAAACAGATCCCAGGAA H.bimaculataHbi6 CATCGGGGCCCTCGGGGCAGTCACCCCCAAACTGGAGCAGTGGCTCAAACAGATCCCAGGAA H.bimaculataHbi2 CATCGAGGCCCTCGGGGCAGTCACCCCCAAACTGGAGCAGTGGCTCAAACAGATCCCAAGAA H.bimaculataHbi4 CATCGGGGCCCTCGGGGCAGTCACCCCCAAACTGGAGCAGTGGCTCAAACAGATCCCAGGAA G.affinsGaf2 CATCGGGACCCTCGGGGCAGTCACCCCCAAACTGGAACACTGGCTACAACAGATCCCAGGAA G.affinisGaf3 CATCGGGGCCCTCGGGGCAGTCACCCCCAAACTGGAGCAGTGGCTACAACAGATCCCAGGAA CATCGGGGCCCTCGGGGCAGTCACCCCCAAACTGGAGCAGTGGCTACAACAGATCCCAGGAA P.gracilisPgr3 P.gracilisPgr2 CATCGGGGCCCTCGGGGCAGTCACCCCCAAACTGGATCAATGGCTACAACAGATCCCAGGAA P.gracilisPgr1 CATCGGGGGCCCTCGGGGCAGTCACCCCCAAACTGGAGCAGTGGCTACAACAGATCCCAGGAA AATTGGAGCACTCGGGGCAGTAACCCCCCAAGCTGGAGGAGTGGCTACAACAGATACCTGGAA 0.latipes0la5 0.latipesOla3 AATTGGGGCACTTGGGGCAGTAACCCCCCAAGCTGGAGGAGTGGCTACAACAGATACCTGGAA AATTGGAGCACTCGTGGCAGTAACCCCCCAAGCTGGAGGAGTGGCTACAACAGATACCTGGAA 0.latipes0la1 X.maculatusXma5 CATCGGGGCCCTCGGGGCAGTCACCCCCAAACTGGACCAATGGCTACAACAGATCCCAGGAA X.maculatusXma2 CATCGGGGGCCCTCGGGGCAGTCACCCCCAAACTGGACCAATGGCTACAACAGATCCCAGGAA T.rubripesdmd GATCGGGACACTAGGGGCAGTAACAGGCAC-CTGAGAAGATGGCTCCAACAGATACCAGGAA * ** *** * * * * * * * **** ** *** 440 450 460 470 480 490 TAACATCTGAGATCTCTGTCCAGAAGAGCGCAATACTGGGAACAGCTAAGATACTGTGCAGG Rex6 C.labridensCla2 CAACATCCGAGATCTCTGTCCAGAAGAGCGCAATACTGGGAACAGCTAAGATACTGCGCAGG O.niloticusOni2 CGACATCGGAGATCTCTGTCCAGAAGAGCGCAGTCCTGGGAACAGCTAAGATACTGCGCAGG 0.nloticusOni1 CAACATCCGAGATCTCTGTCCAGAAGAGCGCAGTCCTAGGAACAGTTAAGATACTTGGCAGG O.niloticusOni3 CAACATTGGAGATCTCTGTCCAGAAGAGTGCAGTCCTGGGAAAAGCTAAGATACTGCGCAGG C.labridensCla1 CGACATCCGAGATCTCTGTCCAGAAGAGCGCAGTCCTAGGAACGGCTAAGATACTGTGCAGG P.formosaPfo2 CAACATCAGACATCTCAGTCCAGAAATGTGCAGTTCTAGGCACAGCCAAGATACTGCGCAGA P.formosaPho4 CAACATCAGACATCTCAGTCCAGAAATGTGCAGTTCTAGGCACAGCCAAGATACTGAGGAGA P.formosaPho6 CAACATCAGACATCTCAGTCCAGAAATGTGCAGTTCTAGGCACAGCCAAGATACTGCGCAGA H.bimaculataHbi6 CAACATCAGACATCTCAGTCCAGAAATGTGCAGTTCTAGGCACAGCCAAGATACTGCGCAGA H.bimaculataHbi2 CAACATCAGACATCTCAGTCCAGAAATGTGCAGTTTTAGGCACAGCCAAGATACTGCGCAGA H.bimaculataHbi4 CAACATCAGACATCTCAGTCCAGAAATATGCAGTTCTAGGCACAGCCAAGATACTGTGCAGA G.affinsGaf2 CAACATCAGACATCTCAGTCCAGAAATGTGCAGTCCTAGGCACAGCCAAGATACTGCGCAGA G.affinisGaf3 CAACATCAGACATCTCAGTCCAGAAATGTGCAGTCCTTGGCACAGCCAAGATACTGCGCAGG P.gracilisPgr3 CAACATCAGACATCTCAGTCCAGAAATGTGCAGTCCTTGGCACAGCCAAGATACTGCGCAGG P.gracilisPgr2 CAACATCAGACATCTCAGTCCGGAAATGTGCAGTCCTTGGCACAGCCAAGATACTGCGCAGG P.gracilisPgr1 CAACATCAGACATCTCAGTCCAGAAATGTGCAGTCCTTGGCACAGCCAAGATACTGCGCAGG 0.latipes0la5 AGACCTCAGACCTCTCAGTCCAGAAGAGCGCAGTGCTAGGAACAGCTAAGATACTGCGCAGA AAACCTCAGACCTCTCAGTCCAGAAAAGCGCAGTGCTAGGAACAGCTAA - ATACTGTGCAGG 0.latipes0la3 0.latipes0la1 AGACCTCAGACCTCTCAGTCCAGAAAAGCGCAGTGCTAGGAACAGCTAAGATACT--GCAGG X.maculatTsXma5 CAACATCAGACATCTCAGTCCAGAAATGTGCAGTCCTTGGCACAGCCAAGATACTGCGCAGA X.maculatTsXma2 CAACATCAGACATCTCAGTCCAGAAATGTGCAGTCCTTGGCACAGCCAAGATACTGCGCAGA T.rubripesdmd CCACACCAGAGATCT--GTCCAGAAGAGCGCAGTCCTAGGAACAGCTAAGATCCTGCGCAGA ** *** **** *** * * * * * * ** ** Rex6 ACCCTCAAGCTCCCAGGCCTCTGGTAGAGGACCAATCACTAGTGAATTCGCGGCCGCCTGCA ACCCTCAAGCT-----C.labridensCla2 ACCCTCAAGC-----0.niloticusOni2 ACCCTCAAGCT-----0.nloticus0ni1 ACCCTCAAGCT-----O.niloticusOni3 C.labridensCla1 ACCCTCAAGCT------P.formosaPfo2_ ACCCTCAAGCT-----P.formosaPho4 ACCCTCAAGCT-----P.formosaPho6 H.bimaculataHbi6 ACCCTCAAGCT-----

H.bimaculataHbi2	ACCCTCAAGCT
H.bimaculataHbi4	ACCCTCAAGCT
G.affinsGaf2	ACCCTCAAGCT
G.affinisGaf3	ACCCTCAAGCT
P.gracilisPgr3	ACCCTCAAGCT
P.gracilisPgr2	ATCCTCAAGCT
P.gracilisPgr1	ACCCTCAAGCT
0.latipes0la5	ACCCTCAAGCT
0.latipesOla3	ACCCTCAAGCT
0.latipes0la1	ACCCTCAAGCT
X.maculatusXma5	ACCCTCAAGCT
X.maculatusXma2	GCCCTCAAGCT
T.rubripesdmd	ACCCTCAGACTCCCAGGCCTCTGGTAGAGGACCCGAGTCTGAAGGAAG
	**** *
	60570580590600610620
	-
Rexб	${\tt GGTCGACCATATGGGAGAGCTCCCAACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTC}$
C.labridensCla2	
0.niloticusOni2	
0.nloticusOni1	
O.niloticusOni3	
C.labridensCla1	
P.formosaPfo2_	
P.formosaPho4	
P.formosaPho6	
H.bimaculataHbi6	
H.bimaculataHbi2	
H.bimaculataHbi4	
G.affinsGaf2	
G.affinisGaf3	
P.gracilisPgr3	
P.gracilisPgr2	
P.gracilisPgr1	
0.latipesOla5	
0.latipesOla3	
0.latipes0la1	
X.maculatTsXma5	
X.maculatTsXma2	
T.rubripesdmd	

	630 640
Rex6	ACCTAAATAGCTTGGCGTATCAA
C.labridensCla2	
0.niloticusOni2	
0.nloticusOni1	
O.niloticusOni3	
C.labridensCla1	
P.formosaPfo2_	
P.formosaPho4	
P.formosaPho6	
H.bimaculataHbi6	
H.bimaculataHbi2	
H.bimaculataHbi4	
G.affinsGaf2	
G.affinisGaf3	
P.gracilisPgr3	
P.gracilisPgr2	
P.gracilisPgr1	
0.latipesOla5	
0.latipesOla3	
0.latipesOlal	
X.maculatusXma5	
X.maculatusXma2	
T.rubripesdmd	