INVESTIGAÇÃO DA TOXICIDADE REPRODUTIVA DO

FUNGICIDA PROCLORAZ, COM ÊNFASE SOBRE ASPECTOS
MORFOFUNCIONAIS DO EPIDÍDIMO DE RATOS ADULTOS

MARCIANA SANABRIA

Abstract

Dissertação apresentada ao Instituto de Biociências, Campus de Botucatu, UNESP, para obtenção do título de Mestre no Programa de Pós-Graduação em Biologia Geral e Aplicada, Área de concentração Biologia Celular, Estrutural e Funcional.

Profa. Dra. Wilma De Grava Kempinas

```
BOTUCATU - SP
    2012
```


INVESTIGAÇÃO DA TOXICIDADE REPRODUTIVA DO
 FUNGICIDA PROCLORAZ, COM ÊNFASE SOBRE ASPECTOS
 MORFOFUNCIONAIS DO EPIDÍDIMO DE RATOS ADULTOS

MARCIANA SANABRIA

PROFA. DRA. WILMA DE GRAVA KEMPINAS

Dissertação apresentada ao Instituto de Biociências, Campus de Botucatu, UNESP, para obtenção do título de Mestre no Programa de Pós-Graduação em Biologia Geral e Aplicada, Área de concentração Biologia Celular, Estrutural e Funcional.

FICHA CATALOGRÁFICA ELABORADA PELA SEÇÃO DE AQUIS. E TRAT. DA INFORMAÇÃO DIVISÃO TÉCNICA DE BIBLIOTECA E DOCUMENTAÇÃO - CAMPUS DE BOTUCATU - UNESP BIBLIOTECÁRIA RESPONSÁVEL: ROSEMEIRE APARECIDA VICENTE

Sanabria, Marciana.

Investigação da toxicidade reprodutiva do fungicida Procloraz, com ênfase sobre aspectos morfofuncionais do epidídimo de ratos adultos / Marciana Sanabria. - Botucatu : [s.n.], 2012

Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências de Botucatu

Orientador: Wilma De Grava Kempinas
Capes: 20600003

1. Fungicidas - Efeito fisiológico. 2. Reprodução. 3. Toxicidade - Testes.

Palavras-chave: Biologia epididimária; Fertilidade; Procloraz; Toxicidade reprodutiva.
®esumo

O procloraz (PCZ) é um fungicida antagonista do receptor de andrógeno amplamente utilizado na agricultura. A exposição pré e peri-natal durante a diferenciação sexual é deletéria para a prole masculina, resultando em malformações de órgãos genitais, redução do peso dos órgãos reprodutores e maior retenção de mamilos em adultos. Considerando-se que a literatura sobre a ação do PCZ sobre o epidídimo é escassa e que é neste órgão que acontece o processo de maturação dos espermatozoides, justifica-se a realização do presente estudo, que pretendeu investigar se a exposição a baixas doses de PCZ, durante durante o período de trânsito dos espermatozoides no epidídimo, pode alterar a morfofisiologia deste órgão e a qualidade espermática em ratos adultos. Para tanto, foram utilizados 40 ratos da linhagem Wistar, com idade inicial de 90 dias divididos em quatro grupos experimentais (10 ratos cada): 0 (veículo), 10 , 15 e $30 \mathrm{mg} / \mathrm{Kg} /$ dia de PCZ diluído em óleo de milho ($1 \mathrm{~mL} / \mathrm{Kg}$) e administrado oralmente (gavage) durante quatro dias. Foram avaliados parâmetros morfofuncionais do trato genital masculino, dosagens hormonais, avaliações espermáticas, além de análises histopatológicas do testículo e epidídimo. Não houve diferença estatisticamente significativa entre os grupos controle e tratados em relação aos parâmetros avaliados. Os resultados indicam que a exposição a baixas doses de PCZ, nestas condições experimentais, não compromete a morfofisiologia do epidídimo e a qualidade espermática em ratos adultos.

Abstract

Prochloraz (PCZ) is a fungicide and androgen-receptor antagonist that is used worldwide in horticulture and agriculture. Pre- and perinatal exposure to this pesticide during sexual differentiation is deleterious for the male offspring, resulting in genital organ malformation, reduced reproductive organ weights and increased nipple retention in adults. Given that the literature on the effects of PCZ on the epididymis is scarce and that sperm maturation takes place in this organ, the present investigation aimed to determine whether low PCZ doses, administered during the sperm transit through the epididymis, can alter the morphophysiology of this organ and sperm quality in rats. For this, adult male Wistar rats, 90 days old, were assigned into four different groups (10 rats each): 0 (vehicle), 10,15 and $30 \mathrm{mg} / \mathrm{Kg} /$ day of PCZ diluted in corn oil ($1 \mathrm{~mL} / \mathrm{Kg}$) administered orally for four days. Morphofunctional parameters of the male reproductive tract, hormonal levels, sperm evaluations, and histopathologic analysis of testis and epididymis were assessed. There were no statistically significant differences between the treated and control groups in relation to the evaluated parameters. The results reported herein show that PCZ exposure, in these experimental conditions, does not compromise epididymal morphophysiology or sperm quality in the adult rat.
"Quando a gente acha que tem todas as respostas, vem a vida e muda todas as pergantas"
(Luis Fernando Verissimo)

Decticatória

Aos meus pais pelo amor e apoio

Incondicional

Oualor "familia" só é possivel se estiver associado ao ualor "amor"e ao conceito "incondicional"
(Marcos Ribeiro)

Agradecimentos

Agradeço a Deus, pelo dom da vida e pelo que conquistei até agora, mas peço a Ele para me dar sabedoria para conquistar muito mais.
"(eus não escothe pessous capacitadas, \& le capacita seus escolhidos"
À minha familia, que, mesmo estando a alguns quilômetros de distância, se mantiveram incansáveis em suas manifestaçōes de apoio e carinho.
"A fé de vocés em mim me fer ter mais fée em mim mesmo"
Ao men afilhado e ao mea sobrinho por tornarem meus dias leves e repletos de alegria.
"®maginando oceano, as crianças brincam na poga d' agua"

A minha Orientadora Profa. Dra. Wilma pela acolhida, oportunidade, confiança, paciència e incentivo para a concretizaçāo desse sonho. Foram dois anos de grande crescimento profissional e pessoal e por isso serei eternamente grata.
"Asons professores corrigem erros, professores brilhantes ensinam a pensar"

A equipe do ReproTox pela disposiģão em ajudar para concretizaçāo desse trabalho, pelos grandes ensinamentos, apoio e momentos de alegria. Aqui também manifesto minha eterna gratidao aos que já fizeram parte dessa equipe, em especial a Carla e Ana Paula, certamente levo muito de vocês em minha vida.
"(C) segredo de um grande sucesso está no trabatho de uma grande equipe"

A Doutoranda Suliana Elaine Perobelli (Minha (Ja) por ter permanecido ao mea lado, me incentivando a percorrer este caminho, por compartilhar angústias e dávidas estendendo sua mào amiga em momentos dificeis. Sem você a realizaçāo desse sonko certamente nào seria repleta de alegrias e leveza. "Quando eu crescer, quero ser igual a voce"
"A glória da amizade não é a mão estendida, nem o sorriso carinhoso, nem mesmo a delícia da companhia. 安 a inspiração espiritual que vem quando vocé descobre que alguém acredita e confia em você"

A Doutoranda Marina Trevizan Guerra, um agradecimento carinhoso por sempre me apoiar e se fazer presente com palauras de encorajamento e carinho, e por todos os momentos de paciência, compreensão, competència, alegrias e a amizade ao longo dessa caminhada.
"At amizade a lealdade residem numa identidade de almas raramente encontrada"
A Thais, Ana Luisa, Denise e Caroline pelo apoio e amizade preciosa durante essa caminhada.
"(3) valor dass coisas nấo está no tempo que elass duram, mas na intensidade com que acontecem. Dor isso existem momentos inesquuciveris, coisas inexpplicáceis e pessoass incomparíacis"

As professoras Iraceles Aparecida Laura e Luciane Candeloro Portugal, minhas eternas "mäes cientificas", obrigada por sempre acreditarem em mim e me apoiarem em todas minhas decisōes. Certamente nào estaria onde estou se nào fosse por nocês!

As meninas "Rep. Natritivas", familia "Ksa das Barbi" e a mocinha Vânia Nanes (verdadeira irmā) por me acolherem e tornarem meus dias inesqueciveis em Botucata.
"A amizade duplica as alegrias e divide as tristezas"

Aos amigos de graduaçāo Andreia, Camila, lanny, Inara, Leticia, Lucimara, Marina, Thales e Fábio que mesmo seguindo caminhos diversos, sempre se fizeram presentes com lembranças, palauras de encorajamento e amor.
"®ara estar junto nü̃o é preciso estar perto, e sim do lado de dentro"

As amigas de toda vida Dani, Bia, Ja, Edy e Nana, por serem verdadeiras dádivas em minha vida.
"Al melhor parte da vida de uma pessoa está nas suas amizades"
Ao Programa de Pós-Graduação Biologia Geral e Aplicada do Instituto de Biociências de Botucatu-UNESP e funcionários pelo suporte acadêmico

A FAPESP (Proc. 2010/03602-3) e a CAPES, pelo auxilio no desenvolvimento deste projeto na forma de bolsa.

Ao técrico do Laboratório de Embriologia, Tosé Eduardo, e à secretária do departamento de Morfologia, Luciana, sempre a disposição em me ajudar.

Aos membros Titulares e Suplentes da Banca, pela disposiģāo.

Ao Dr. Gary Klinefelter, da Environmental Protection Agency (US-EPA), EUA, pelas ideias e assistència na elaboração do projeto.

A Drá Tanete Aparecida Anselmo-Franci e seus colaboradores da USP - Ribeirāa Preto, pelas dosagens hormonais.

Aos ratos, nobres seres fundamentais em prol do desenvobvimento da ciência.

Aos meus mentores e guias espirituais que me conduziram e auxiliaram integralmente durante essa jornada.

A todos que de algama maneira contribuiram para que este percurso pudesse ser concluido.
"Cu te tornas eternamente responsiavel por aquilo que cativas"
"Que en jamais me esqueça que Deus me ama infinitamente, que um pequeno grāa de alegria e esperança dentro de cada um é capaz de mudar e transformar qualquer coisa, pois... A vida é construída nos sonhos e concretizada no amor" Chico Xavier

Sumário

1. INTRODUÇÃO 01
1.1. Praguicidas 02
1.2. Influência dos contaminantes ambientais na regulação endócrina. 03
1.3. Praguicidas e seus reflexos ambientais 05
1.4. Mistura de praguicidas 07
1.5. Relevância do Tema. 08

2. CAPÍTULO

Abstract 13
2.1. Introduction 14
2.2. Material and Methods 15
2.3. Results 19
2.4. Discussion 20
2.5. Conclusions 23
Acknowledgements 23
References 24
Conflict of interest statement 28
Figure legends 29
Tables and Figures. 30
3. CONCLUSÃO 35
4. REFERÊNCIAS BIBLIOGRÁFICAS 37
5. APÊNDICES. 48
©ntrodução

1.1. Praguicidas

Agrotóxico é qualquer substância ou mistura de substâncias utilizadas para a prevenção, destruição ou controle de pragas, incluindo vetores, ervas daninha ou doenças de plantas capazes de interferir na produção, processamento, estocagem e transporte de alimentos (Organização Pan-Americana da Saúde-OPAS, 1996), também definida como praguicidas pela FAO (Organização para Agricultura e Alimentação das Nações Unidas, 1980) podendo ser de origem sintética ou biológica (World Health Organization-WHO, 1990).

Devido ao uso extensivo de praguicidas (fungicidas, herbicidas, inseticidas) durante anos, em diversas regiões do mundo, houve um grande aumento nos níveis de contaminação ambiental acarretando diversos danos à saúde humana (Bordjiba et al., 2001).

Dados da WHO (2002) demonstraram que ocorrem, a cada ano, de 30 mil a 40 mil mortes devido a intoxicações por praguicidas. Sua exposição pode ser atribuída ao consumo de alimentos oriundos da produção agropecuária, ao contato direto, no caso dos aplicadores rurais e/ou manipuladores, ou ainda ao contato indireto, como no caso das populações que estão sujeitas à aplicação de praguicidas para controle de vetores de endemias (ANVISA, 2003).

Exposição a substâncias químicas podem contribuir para o surgimento de distúrbios em várias estruturas e funções envolvidas na reprodução de seres humanos e de outras espécies de animais, o que vem sendo motivo de grande preocupação nos últimos anos (Neubert, 2002). Efeitos induzidos por essas substâncias podem ocorrer pela interação direta da substância com componentes do sistema reprodutor ou indiretamente pela interferência na regulação endócrina, visto que, tanto o desenvolvimento quanto a manutenção do sistema reprodutivo é dependente de interações hormonais (Whitley et al., 1994).

Sendo assim, a interferência de qualquer tóxico na interação do eixo hipotálamo-hipófise-gônada, responsável pela regulação endócrina, pode perturbar a homeostase reprodutiva e consequentemente levar a anormalidades (Neubert, 2002).

1.2. Influência dos contaminantes ambientais na regulação endócrina

A saúde de um indivíduo é determinada pela interação entre dois fatores: o ambiente interno do corpo e o ambiente externo a ele. Sendo assim, o ar limpo, água potável e alimento livre de toxinas são requisitos fundamentais para garantir uma vida saudável (Bratt, 2000). No entanto, é cada vez maior a contaminação do ambiente devido às atividades agrícola e industrial, usados para atender às crescentes necessidades da sociedade acarretando em consequências na saúde humana (Bratt, 2000; Bordjiba et al., 2001).

Uma correlação entre a contaminação ambiental e o aparecimento de doenças e alterações reprodutivas na população humana e em animais, realizada nos Estados Unidos no inicio de 1947, começou a preocupar a opinião pública (Tarin, 1972). A partir dessas evidências iniciou-se uma série de debates entre a comunidade científica de diversos países e as agências regulatórias internacionais a respeito dos efeitos adversos que podem resultar da exposição a um grupo de químicos que têm o potencial de alterar o funcionamento normal do sistema endócrino de animais e humanos. Entre essas alterações está um significante declínio na qualidade e quantidade do sêmen humano (Auger et al., 1995).

Ao mesmo tempo, a incidência de hipospadia e criptorquidia vem crescendo consideravelmente (Czeizel, 1985; Matlai \& Beral, 1985), assim como o câncer testicular, o qual é agora a malignidade mais comumente encontrada em homens jovens (Nethersell et al., 1984; Pike et al., 1987; Sociedade Brasileira de Urologia, 2011) e câncer de próstata e pênis, que acomete homens acima de 50 anos (Sociedade Brasileira de Urologia, 2011).

Tem sido evidenciado que várias substâncias químicas presentes na poluição ambiental têm propriedades parecidas com hormônios, e que, portanto, agem como tal no organismo, por isso conhecidos como desreguladores endócrinos ou xenohomônios (Paumgartten, 2003), ou seja, é um agente exógeno capaz de interferir na síntese, reserva, liberação, transporte, metabolismo, ligação, ação ou eliminação de hormônios naturais do organismo responsáveis pela regulação da homeostase e dos processos de desenvolvimento (Kavlock et al., 1996).

As substâncias tóxicas podem desregular o sistema endócrino e reprodutivo de modo direto, quando a estrutura química do tóxico é similar a de um hormônio, favorecendo a ligação da molécula do tóxico ao receptor específico deste hormônio, ou ainda de modo indireto, em que o tóxico pode alterar a estrutura do hormônio durante sua síntese ou glicolisação, ou mudar o metabolismo hormonal, ocasionando um aumento ou diminuição nos níveis hormonais (Neubert, 1997; Sokol, 1997; Neubert, 2002).

A interferência da ação de hormônios esteroidais pode ocasionar diversos prejuízos para o trato reprodutor masculino. Em investigações laboratoriais, esses compostos apresentaram atividades que mimetizam ou antagonizam aquelas dos hormônios sexuais esteroidais, e que, portanto tornam esses compostos fortes candidatos a agentes causadores de deterioração da qualidade espermática e de desordens do trato reprodutivo masculino (Sharpe \& Skakkebaek, 1993).

Especula-se que problemas referentes às alterações reprodutivas em humanos e em outras espécies de animais, podem estar relacionados às modificações ambientais que aconteceram nos últimos 50 anos, nos ambientes físico, químico, biológico e sociocultural (Paumgartten, 2003).

Muitos são os estudos que relataram toxicidade no aparelho reprodutor masculino mediado por contaminantes ambientais. Essas alterações podem ocorrer na vida pré-natal, neonatal, púbere, adulta ou ainda em mais de uma destas fases, dependendo do momento de exposição ao tóxico (Neubert, 2002; Phillips \& Tanphaichitr 2008).

Diversos contaminantes químicos ambientais, tais como inseticidas, herbicidas, fungicidas, plastificantes, entre outros, já foram identificados como tendo atividades antiandrogênica e/ou estrogênica, atuando assim como desreguladores endócrinos (Kelce et al., 1997; Gray et al., 1999; Parks et al., 2000; Jarfelt et al., 2005).

1.3. Praguicidas e seus reflexos ambientais

A contaminação ambiental pelos praguicidas pode ocorrer de diversas maneiras, poluindo o ar (pulverizações), o solo (lavouras) e a água (lençóis freáticos e leitos de rios) (Moreira et al., 2002) em sua maioria persistem no ambiente interferindo em toda a cadeia ecológica do ecossistema (ANVISA, 2010).

O uso continuado e indiscriminado de praguicidas e a propriedade de volatilização destes compostos químicos são fatores que intensificam impactos ambientais, tais como: alterações e perdas do perfil do solo, fauna e flora regionais (BRASIL, 2010). Ou seja, a utilização desses agentes tóxicos provoca efeitos sobre diferentes populações favorecendo a colonização da área por espécies mais resistentes, diminuindo a biodiversidade e gerando, assim, diversos efeitos sobre o equilíbrio ecológico local (Moreira et al., 2002).

A bioacumulacão é um fator importante na potencialização da ação tóxica do agente químico no ambiente, pois através deste processo os seres vivos absorvem e retêm substâncias químicas no seu organismo em quantidade superior as encontradas no ambiente (Mesquita, 2001).

A combinação entre compostos que são pouco ou não são tóxicos, mas, que devido ao efeito sinérgico e da potenciação, também favorecem a capacidade de degradação ambiental e de deterioração da saúde humana (FUNASA, 2010).

No Brasil foram criadas leis, portarias e resoluções a fim de diminuir e controlar o uso de praguicidas, no entanto, o que vem ocorrendo é o aumento significativo do uso desses compostos, principalmente os de uso proibido em outros países, posto que empresários do setor de defensivos agrícolas veem no Brasil a oportunidade de continuidade do seu empreendimento, de tal forma que esses produtos continuam sendo comercializados mesmo com sua ação nociva comprovada (ANVISA, 2010).

Dados do Ministério da Saúde indicam que grande parte dos casos de intoxicações por praguicidas ocorre nas regiões rurais, no entanto a real dimensão do problema não é evidenciada, uma vez que esses dados advêm de Centros de Controle de Intoxicações situados em centros urbanos, que em sua maioria são inexistentes ou de difícil acesso para muitas populações rurais (Bochner, 2007).

Grande parte da contaminação humana por praguicidas ocorre através da via ambiental, entretanto, o impacto resultante da contaminação ambiental é, em geral, consideravelmente menor que o impacto resultante da via ocupacional (Almeida \& Garcia, 1991; Gonzaga et al., 1992; Faria et al., 2000; ANVISA, 2010).

Com exceção de alguns grandes exportadores, a agricultura próxima dos grandes centros é de pequeno porte e uma atividade eminentemente familiar, em que adultos e crianças se ajudam mutuamente no trabalho, de tal modo que ambos estão sujeitos a elevado risco de contaminação. Esse problema é ainda mais preocupante uma vez que esses compostos possuem atividade carcinogênica e/ou de desregulação endócrina, além de serem escassos os estudos referentes à ação de sua exposição continuada sobre o corpo humano
ainda em desenvolvimento (Moreira et al., 2002).

1.4. Mistura de praguicidas

A exposição humana aos contaminantes ambientais não se limita a compostos individuais, visto que, muitos destes produtos químicos geralmente são misturas de diferentes fontes, como farmacêuticos, resíduos de praguicidas, ou álcool (Veeramachaneni, 2008). É difícil prever a toxicidade de tais misturas baseadas apenas no conhecimento sobre a toxicidade e mecanismos de ação de compostos isolados (DeRosa et al., 2004; NourizadehLillabadi et al., 2009).

São relativamente poucos os estudos que abordam misturas químicas e seus possíveis efeitos na saúde humana devido a inúmeros fatores que confundem à avaliação dessas misturas (Carpenter et al., 1998; Mantovani et al., 2006). No entanto, vem aumentando o interesse entre a comunidade científica em pesquisar o risco que a população está sujeita quando expostas a esses compostos químicos (DeRosa et al., 2004; Mantovani et al., 2006).

Alguns estudos indicam o aumento de criptorquidia em filhos de mulheres que trabalham em áreas agrícolas e/ou vivem nas proximidades onde se aplicam diversos tipos de praguicidas (Kristensen et al., 1997; Weidner et al., 1998; Carbone et al., 2007; Andersen et al., 2008). Pierik et al. (2004) também relataram malformações congênitas associadas a exposição aos praguicidas e fumo.

Jacobsen et al. (2010) mostraram que ratas expostas a mistura de cinco praguicidas (Procimidona, Mancozeb, epoxiconazole, Tebuconazole e Procloraz) durante a gestação e lactação induz efeitos graves como aumento de distócia e mortalidade na prole.

Perobelli et al. (2011) combinando cinco praguicidas sendo eles: Dicofol, Dieldrin, Endosulfan (Inseticidas Organoclorados); Diclorvos (Inseticida Organofosforado) e

Permetrina (Inseticida Piretróide), observaram comprometimento da motilidade espermática em ratos, sugerindo que o epidídimo pode ser órgão-alvo para os efeitos adversos de praguicidas na reprodução, sobretudo quando estes produtos químicos estão combinados em misturas.

Efeitos adversos na função reprodutiva masculina também foram relatados em ratos, devido à exposição da combinação de Dimetoato e Deltametrina, no qual observaram alterações morfológicas dos espermatozoides e diminuição da concentração espermática no epidídimo (Abdallah et al., 2010).

Eustache et al. (2009) observaram em ratos expostos a longo prazo e a baixas doses da combinação de Genisteína e Vinclozolin, diversas anomalias no trato reprodutor masculino, alterações na produção e qualidade espermática acarretando em comprometimento na fertilidade. Em outro estudo, a mistura de Vinclozolin e Procimidona provocou diminuição no peso de órgãos andrógenos dependentes, bem como nos níveis de testosterona em ratos (Gray et al., 2001; Nellemann et al., 2003).

Rider et al. (2010) sugerem que compostos químicos que possuem ação tóxica no mesmo tecido, independentemente do seu mecanismo específico de ação, possuem efeito acumulativo e aditivo quando em combinação.

1.5. Relevância do Tema

A utilização dos praguicidas na agricultura deu-se início na década de 1920, época em que eram pouco conhecidos do ponto de vista toxicológico. Durante a Segunda Guerra Mundial foram utilizados como arma química, tendo seu uso expandido à produção industrial mundial. No Brasil, foram primeiramente utilizados em programas de saúde pública, no combate a vetores, controle de parasitas passando a ser utilizados mais intensivamente na
agricultura a partir da década de 1960 (OPAS, 1996).
A utilização dos praguicidas no Brasil do ponto de vista ambiental e principalmente de saúde pública tem determinado um forte impacto negativo, com contaminação dos vários meios (ar, água e solo) e muitos casos de efeitos adversos na saúde, principalmente os de longo prazo, que podem determinar doenças crônicas podendo até mesmo levar a morte.

Além da exposição ocupacional, a contaminação ambiental coloca em risco de intoxicação outros grupos populacionais, principalmente pela ingestão de alimentos contaminados, ou seja, efeitos dos praguicidas sobre a saúde não dizem respeito apenas aos trabalhadores expostos, mas à população em geral.

O interesse em se estudar esses agentes químicos introduzidos ou disseminados pelo homem no ambiente tem aumentado, pois existem evidências de afetar drasticamente o desenvolvimento normal, promovendo alterações que se perpetuam no indivíduo, podendo inclusive diminuir a qualidade espermática humana e em outros animais, paralelamente ao aumento de problemas do trato reprodutor masculino.

Mesmo sendo muitos os trabalhos acerca dos efeitos dos praguicidas na saúde reprodutiva, muitos são controversos e precisam ser confirmados e elucidados, tanto em animais de experimentação como em humanos, além do fato de que a exposição humana aos contaminantes ambientais não está restrito a compostos individuais, visto que muitos desses produtos químicos são utilizados em combinação com outros compostos e possuem efeito acumulativo no ambiente.

O Procloraz é um fungicida da classe imidazol e têm a capacidade de interferir nos mecanismos endócrinos induzindo efeitos antiandrogênicos em in vivo e in vitro (Jacobsen et al., 2010). Pode alterar também níveis hormonais tiroidianos afetando o desenvolvimento sexual do cérebro (Vinggaard et al., 2002; 2005) além de aumentar a mortalidade da prole
(Taxvig et al., 2007). Dados experimentais mostraram que o Procloraz prolonga o período gestacional em ratas, provavelmente devido ao aumento de progesterona (Noriega et al., 2005; Vinggaard et al., 2005; Taxvig et al., 2007) efeitos comuns provocados pela exposição a diversos fungicidas imidazoles (Moser et al., 2001; Noriega et al., 2005; Taxvig et al., 2007).

Estudos em ratos evidenciaram a ocorrência de alterações importantes na prole masculina como diminuição da distância anogenital, do peso da próstata e epidídimo, bem como, maior retenção de mamilos e de hipospadia, cujas mães foram expostas a doses superiores a $30 \mathrm{mg} / \mathrm{Kg}$ de Procloraz (Noriega et al., 2005; Vinggaard et al., 2005; Christiansen et al., 2009). Este fungicida também pode induzir diminuição nas concentrações de testosterona (Vinggaard et al., 2005; Laier et al., 2006; Blystone et al., 2007) possivelmente devido a interação com o receptor de andrógeno e deste modo interferir no desenvolvimento sexual masculino (Willingham et al., 2006).

Diante desse contexto, esse trabalho objetiva investigar se a exposição a diferentes doses do fungicida Procloraz, durante o período de trânsito dos espermatozoides pelo epidídimo do rato adulto, pode alterar as funções deste órgão e a qualidade espermática, visto que, é o órgão onde ocorre o processo de maturação espermática e a literatura sobre a ação desse fungicida no epidídimo é escassa.

Artigo submetido ao periódico
"Ecotoxicology and Environmental Safety"

Assessment of the reproductive toxicity from subacute exposure to low doses of fungicide prochloraz in sperm quality in rats

Marciana Sanabria ${ }^{\mathrm{a}^{*}}$, Alessandra Pessin ${ }^{\mathrm{a}}$, Mirella Rossitto Zanutto ${ }^{\mathrm{a}}$, Juliana Elaine Perobelli ${ }^{\mathrm{b}}$, Marina Trevizan Guerra ${ }^{\text {b }}$, Thais Petrochelli Banzato ${ }^{\text {a }}$, Cibele dos Santos Borges ${ }^{\text {a }}$, Wilma De Grava Kempinas ${ }^{\text {c }}$

${ }^{\text {a }}$ Graduate Program on General and Applied Biology, Institute of Biosciences, Univ Estadual Paulista-UNESP, Botucatu, SP, Brazil
${ }^{\mathrm{b}}$ Graduate Program of Cellular and Structural Biology, Institute of Biology, State University of Campinas- UNICAMP, Campinas, SP, Brazil
${ }^{c}$ Department of Morphology, Institute of Biosciences, Univ Estadual Paulista-UNESP, Botucatu, SP, Brazil
*Corresponding author: Departamento de Morfologia, Instituto de Biociências, UNESP, 18618-970 Botucatu, SP, Brazil. Tel.: +55 143811 6264, ext. 133. E-mail address: sanabria@ibb.unesp.br (M. Sanabria).

Abbreviations:

PCZ - prochloraz

Abstract

Prochloraz (PCZ) is a fungicide and androgen-receptor antagonist that is used worldwide in horticulture and agriculture. Pre-and perinatal exposure to this pesticide during sexual differentiation is deleterious for the male offspring, resulting in genital organ malformation, reduced reproductive organ weights and increased nipple retention in adults. Given that the literature on the effects of PCZ on the epididymis is scarce and that sperm maturation takes place in this organ, the present investigation aimed to determine whether low PCZ doses, administered during the sperm transit through the epididymis, can alter the morphophysiology of this organ and sperm quality in rats. For this, adult male Wistar rats, 90 days old, were assigned into four different groups (10 rats each): 0 (vehicle), 10,15 and $30 \mathrm{mg} / \mathrm{Kg} / \mathrm{day}$ of PCZ diluted in corn oil ($1 \mathrm{~mL} / \mathrm{Kg}$) administered orally for four days. Morphofunctional parameters of the male reproductive tract, hormonal levels, sperm evaluations, and histopathologic analysis of testis and epididymis were assessed. There were no statistically significant differences between the treated and control groups in relation to the evaluated parameters. The results reported herein show that PCZ exposure, in these experimental conditions, does not compromise epididymal morphophysiology or sperm quality in the adult rat.

Keywords: Reproductive Toxicity; Prochloraz; Epididymal Biology; Fertility

1. Introduction

The epididymis is an organ of the male genital system, formed by a highly convoluted duct that connects the efferent ducts to the vas deferens (Hermo and Robaire, 2002; Sullivan et al., 2005), and performs a variety of functions, including the transport, protection, maturation, concentration and storage of sperm (Hermo and Robaire, 2002; Rodríguez et al., 2002).

Sperm transit time through the epididymis has an important role in the sperm maturation. Many morphological, physiological and biochemical sperm characteristics are modified as part of this process (Orgebin-Crist, 1969), through an orchestrated interaction between the lamina propria that encircles the epithelium of the duct, the epididymal epithelium, the luminal fluid components and the maturing sperm (Klinefelter, 2002; Toshimori, 2003). Thus, an alteration in the transit time can provoke problems in sperm maturation as well as alter the number of gametes available for ejaculation (Klinefelter, 2002).

Studies have demonstrated increase in adverse outcome of human and wildlife reproduction linked to chemical exposures, such as increased dysfunction of the male reproductive tract, evidenced by a higher frequency of testicular cancer, cryptorchidism, hypospadias and decreased sperm quality in humans and other animals (Jégou et al., 1999; Paumgartten, 2003), suggesting that the epididymis is the target of these toxic substances (Klinefelter and Suarez, 1997).

It has been reported that PCZ, an imidazole fungicide worldwide used in horticulture and agriculture, disrupts male rat differentiation (Blystone et al., 2007). The action of imidazoles used as fungicides or antimycotic drugs is based on the inhibition of the cytochrome P450-dependent 14α-demethylase activity that is required for the conversion of
lanosterol to ergosterol (Henry and Sisler, 1984), an essential component of fungal cell membranes. The molecular basis of this inhibition is the presence of an imidazole moiety that interacts strongly with the iron atom of cytochrome P450 (Laignelet et al., 1992).

Maternal exposure to PCZ during the gestational period of sexual differentiation resulted in hypospadias and other abnormalities, such as reduced reproductive organ weights, and increased retention of nipple/areolas in male rat offspring (Laier et al., 2006; Noriega et al., 2005; Vinggaard et al., 2005a). PCZ is reported to reduce fetal testosterone production in vivo and ex vivo (Laier et al., 2006; Vinggaard et al., 2005; Wilson et al., 2004) and be androgen receptor (AR) antagonist in vitro and in vivo (Andersen et al., 2002; Noriega et al., 2005; Vinggaard et al., 2002). However, the relationship between reduced fetal testosterone production and morphological effects in adult males is not well understood (Blystone et al., 2007).

Given that the literature on the effects of PCZ on the epididymis is scarce and that sperm maturation takes place in this organ, the present investigation aimed to determine whether low PCZ doses, administered during the sperm transit through the epididymis, can alter the morphophysiology of this organ and sperm quality in rats.

2. Materials and Methods

2.1. Animals

Adult male (90 days old, weighing 400 g ; $\mathrm{n}=40$) Wistar rats were supplied by Central Biotherium of the São Paulo State University and maintained in polypropylene cages (43 x 30 x 15 cm) with laboratory-grade pine shavings as bedding. Rats were maintained under controlled temperature $\left(\pm 23^{\circ} \mathrm{C}\right)$ and lighting conditions (12L, 12D photoperiod, lights switched off at 07:00 h) and had free access to food and water. Animals were allowed to adapt
for at least 1 week before the beginning of the experiment. The experimental protocol followed the Ethical Principles in Animal Research adopted by the Brazilian College of Animal Experimentation and approved by the Biosciences Institute/ UNESP Ethical Committee for Animal Research (Protocol number: 211).

2.2. Experimental groups and treatment

Male rats were randomly assigned into four different groups (10 rats each): 0 (vehicle), 10, 15 and $30 \mathrm{mg} / \mathrm{Kg} /$ day of PCZ (Sigma Chemical Co., St. Louis, Mo., USA, code 45631) diluted in corn oil ($1 \mathrm{~mL} / \mathrm{Kg}$) administered orally (gavage) for four days, which is time that sperm lead to migrate from the caput to the proximal cauda epididymidis (Robb et al., 1978), avoiding possible contributions of testes (Klinefelter et al., 1990). The doses were chosen based on the fungicide LD50 (Bayer, 2007). In order to evaluate endpoints of general reproductive toxicity and fertility the study was conducted in two steps, called Experiment 1 and Experiment 2, described as follows.

2.3. Experiment 1

2.3.1. Body weight and weight of reproductive organs

On the day following the end of treatment the animals from each experimental group were slightly anaesthetized with ether and killed by decapitation. The right testis, epididymis and vas deferens, ventral prostate and seminal vesicle (without the coagulating gland and full of secretion) were removed and their weights (absolute and relative to body weights) were determined.

2.3.2. Serum hormone levels

After decapitation, blood was collected from the ruptured cervical vessels for the
determination of the serum concentrations of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). The serum was obtained after centrifugation (2400 rpm, $20 \mathrm{~min}, 4^{\circ} \mathrm{C}$) in a refrigerated apparatus and was frozen at $20^{\circ} \mathrm{C}$ until the moment of hormonal determination. The analyses were made at the Laboratory of Neuroendocrinology of São Paulo State University (USP - Ribeirão Preto). Serum levels employed specific kits supplied by ImmuChem ${ }^{\text {TM }}$. All samples were dosed in duplicate in the same assay to avoid inter-assay errors.

2.3.3. Daily sperm production per testis, sperm number and transit time in the epididymis

Homogenization-resistant testicular spermatids (stage 19 of spermiogenesis) and sperm in the caput / corpus epididymis and cauda epididymis were counted as described previously by Robb et al. (1978), with adaptations by Fernandes et al. (2007) described as follows: the right testis, decapsulated and weighed soon after collection, were homogenized in 5 mL of $\mathrm{NaCl} 0.9 \%$ containing Triton X100 0.5%, followed by sonication for 30 sec . After a 10 -fold dilution a sample was transferred to Newbauer chambers (four fields per animal), preceding a count of mature spermatids. To calculate daily sperm production (DSP) the number of spermatids at stage 19 was divided by 6.1 , which is the number of days these spermatids are present in the seminiferous epithelium. In the same manner, caput/corpus and cauda epididymis portions were cut into small fragments with scissors and homogenized, and sperm counted as described for the testis. The sperm transit time through the epididymis was determined by dividing the number of sperm in each portion by DSP.

2.4. Experiment 2

2.4.1. In utero artificial insemination

Because rats produce and ejaculate an excess of qualitatively normal sperm, artificial
in utero insemination of a fixed, critical number of sperm has been suggested as a means of increasing the sensitivity of a toxicant-induced decrease in sperm quality in the rat (Amann, 1986). According to this technique, a fixed number of sperm collected in the cauda epididymis is inseminated directly into the uterus permitting evaluation of sperm quality, without the interference of other factors such as alterations to the sexual behaviour pattern and number of sperm available for ejaculation (Klinefelter, 2002).

Females (60 days old, weighing 230 g ; $\mathrm{n}=80$) in induced oestrus by LHRH were paired with sexually experienced, vasectomized males for 1 h . Receptive females (that exhibited lordosis) were selected for insemination. The isolation and preparation of distal cauda sperm for insemination was similar to that described previously (Kempinas et al., 1998b; Klinefelter et al., 1994). When insemination was complete, the abdominal musculature was sutured. Females were killed 20 days later to evaluate fertility.

2.4.1.2 Fertility evaluation

On the 20th day of gestation the females were killed by decapitation. After collection of the uterus and ovaries, the number of corpora lutea, implants, resorptions, live and dead fetuses were determined. From these results the following parameters were calculated: fertility potential (efficiency of implantation): implantation sites/corpora lutea x 100; rate of pre-implantation loss: number of corpora lutea - number of implantations/number of corpora lutea x100; rate of post-implantation loss: number of implantations - number of live fetuses/number of implantations x100.

2.4.2. Sperm motility

Sperm motility was evaluated from sperm used for artificial insemination and immediately diluted in 2 mL of modified HTF medium (human tubular fluid, Irvine Scientific), prewarmed to $34^{\circ} \mathrm{C}$. Then an aliquot of $10 \mu \mathrm{~L}$ of the diluted sperm was placed in a Makler chamber (Irvine, Israel) and analyzed under a light microscope, at 400x magnification. One hundred sperm were evaluated per animal and classified for motility into: mobile, with progressive trajectory; mobile, with nonprogressive trajectory and immotile.

2.4.3. Histological Analysis of Testes and Epididymis

The testis and epididymis were removed and fixed in Bouin fixing solution (picric acid, formaldehyde and glacial acetic acid, 7.5:2.5:0.5, v/v) for 24 h . The pieces were embedded in paraffin wax and sectioned at 5 mm . The histopathological evaluation of organs was accomplished quantitatively for the testis and qualitatively for both organs under a light microscope following specific guidelines for toxicological studies (Foley, 2001).

2.5. Statistical analysis

For comparison of results among the experimental groups, statistical tests for analysis of variance (ANOVA) were utilized with the 'a posteriori' Tukey-Kramer test or the nonparametric Kruskal-Wallis test with the 'a posteriori' Dunn test, according to the characteristics of each variable. Differences were considered significant when $\mathrm{p}<0.05$.

3. Results

3.1. Experiment 1

No significant differences in body weights occurred among the groups during the experimental period. In the same manner, the absolute and relative weights of the
reproductive organs did not differ, as shown in Table 1.
Treatments with different doses of PCZ did not result in significant changes in serum of testosterone, LH, or FSH, between the experimental groups (Table 2).

In relation to number of mature spermatids in the testis and DSP, there were no statistically significant differences between groups. In the epididymis the sperm number and transit time in the caput/corpus and cauda regions were also similar between groups after PCZ exposure (Table 3).

3.2. Experiment 2

The parameters evaluated after in utero artificial insemination were similar between control and treated groups, as shown in Table 4. Similarly, sperm motility evaluation showed that there were no statistically significant differences among the experimental groups (Figure 1). Histopathological analysis of the testes and epididymis under a light microscope did not reveal any apparent alterations that could be attributed to the fungicide exposure (data not shown).

4. Discussion

Although aimed at meeting the growing needs of society, industrial and agricultural activities have consistently increased the problem of environmental contamination, imposing consequences on human health (Bordjiba et al., 2001; Bratt, 2000).

It is hypothesized that the problems referencing reproductive alterations in humans and other animal species may be related to environmental modifications that have occurred in the last 50 years, in the physical, chemical, biological and sociocultural environments (Paumgartten, 2003). Many studies have reported toxicity in the male genital tract mediated by environmental contaminants. These alterations may take place prenatally, neonatally or
during puberty, adulthood or in more than one of these phases, depending on the moment of exposure to the toxic agent (Neubert, 2002; Phillips and Tanphaichitr, 2008).

PCZ, widely utilized in agriculture, promotes diverse reproductive dysfunctions during sexual differentiation in rats (Blystone et al., 2007). The analysis of body weight provides important information on the general toxicity of the compound and its possible implications in the health of the organism (U.S. EPA, 1996).

In the present study, the similarities of body weights between control and treated rat groups during the treatment period and after the in utero artificial insemination procedure, indicate that PCZ did not provoke toxicity maternal and did not compromise the general animal health status, thus corroborating the results of Blystone et al. (2007) obtained from pregnant Sprague-Dawley rats treated with different PCZ doses.

Determination of the relative and absolute weights of such reproductive organs as the testis, epididymis, seminal vesicle and prostate, are important parameters for evaluating the risk of toxic effects on the male reproductive system (Clegg et al., 2001). Reductions in reproductive organ weights in Wistar rats treated with PCZ, either at high doses and / or mixed with pesticides, have been widely reported and may be related to diminution in testosterone levels, since these organs are androgen-dependent (Christiansen et al., 2009; Gray et al., 1999; Hass et al., 2007; Jacobsen et al., 2010; Laier et al., 2006; Noriega et al., 2005; Ostby et al., 1999; Taxvig et al., 2007; Vinggaard et al., 2002; Vinggaard et al., 2005), which did not occur in the present study, probably on account of the utilization of doses lower than those described in the literature.

It has been demonstrated that several chemical substances present in environmental pollution have properties resembling those of hormones, and therefore act as such in the
organism, being known for this reason as endocrine disruptors or xenohormones (Paumgartten, 2003).

PCZ is an androgen-receptor antagonist (Andersen et al., 2002; Noriega et al., 2005; Vinggaard et al., 2002) capable of diminishing the production of fetal testosterone in vivo and ex vivo (Laier et al., 2006; Vinggaard et al., 2005; Wilson et al., 2004). A study by Blystone et al. (2007) found inhibition of testosterone production in fetuses whose dams were exposed to doses greater than or equal to $62.5 \mathrm{mg} / \mathrm{Kg} /$ day of PCZ , results similar to that found by Noriega et al. (2005). The results of the present study did not present expressive effects on testosterone levels. These differences may be due to the low doses utilized in the experimental protocol. The plasma concentrations of FSH and LH were also similar between the control and PCZ-treated animals, corroborating the data in the literature (Vinggaard et al., 2002).

Sperm parameters such as the production and storage of spermatozoids, as well as the transit time of these cells through the epididymis remained similar between the groups after the treatment period. Similarly, Taxvig et al. (2007), in a study of rats exposed to the triazole fungicides tebuconazole and epoxiconazole in utero and during lactation, did not observe significant alterations. Nevertheless, the scarcity of studies with PCZ and the utilization of doses higher than $50 \mathrm{mg} / \mathrm{Kg} /$ day realized in other studies with azole fungicides hamper a direct comparison between the results obtained in the present study and those reported in the literature.

Sperm motility is one of the most important parameters utilized in the evaluation of the quality of spermatozoids in semen samples obtained in vitro (Mahadevan and Trounson, 1984) and in vivo (Barratt et al., 1993; Bostofte et al., 1990). Vinggaard et al. (2005) verified that after perinatal exposure to PCZ doses of $30 \mathrm{mg} / \mathrm{Kg}$, there were no alterations in sperm motility, corroborating the data of the present study.

Noriega et al. (2005) reported severe lesions such as vacuolization and atrophy in seminiferous tubules of rats whose dams had been exposed to high doses of PCZ. In the present study, light microscopy found no morphological alterations in the testes or epididymides, either in the epithelium or interstice, in all the experimental groups, given that the utilized doses were lower than those reported in the literature.

Artificial insemination was utilized in utero to evaluate sperm quality, since this technique excludes the influence of sexual behavior and the number of gametes available for ejaculation in a fertility test (Klinefelter, 2002). In the present work, after this procedure the gestation rate (number of pregnant females divided by the number of inseminated) was similar among the different experimental groups, as were the fertility potential and the pre- and postimplantation loss rates, indicating that there was no reduction in the sperm fertility capacity. In a study carried out by Vinggaard et al. (2005), the pre- and post-implantation loss rates after natural mating were not significant, indicating that at high doses PCZ also does not induce an elevation of fetal mortality and consequently post-implantation losses, corroborating the data from the present study. According to Fernandez et al. (2007), when the sperm transit time through the epididymis and such sperm parameters as the number and motility of spermatozoids are altered, a reduction in fertility potential may occur. Since none of these parameters was altered among the experimental groups, we may suggest that the fertility of these animals was not compromised.

5. Conclusions

In summary, the results obtained in the present study suggest that exposure to Procloraz, under these experimental conditions and according to the parameters evaluated, does not provoke reproductive toxicity in adult male rats.

Acknowledgements

The authors are grateful to Dr. Janete Aparecida Anselmo Franci and Dr. Ruither de Oliveira Gomes Carolino of the Department of Morphology, Stomatology and Physiology, Dental School of Ribeirão Preto,USP, for collaboration in the hormonal dosages. We are also grateful to José Eduardo Bozano, from the Department of Morphology of the São Paulo State University (UNESP), Botucatu, SP, for the excellent technical assistance. Finally, authors are grateful to The State of São Paulo Research Foundation (FAPESP) and Coordination of Improvement of Higher Education Personnel (CAPES), for the financial support, as a Masters scholarship.

References

Amann, R.P., 1986. Detection of alterations in testicular and epididymal function in laboratory animals. Environ. Health. Perspect. 70, 149-58.

Andersen, H.R., Vinggaard, A.M., Rasmussen, T.H., Gjermandsen, I.M., Bonefeld Jorgensen, E.C., 2002. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol. Appl. Pharmacol. 179, 1-12.

Barratt, C.L.R., Tomlinson, M.J., Cooke, I.D., 1993. Prognostic significance of computerized motility analysis for in vivo fertility. Fertil. Steril. 60, 520-525.

Bayer CropScience., 2007. Safety Data Sheet: Buenos Aires: Argentina.
Blystone, C.R., Lambright, C.S., Howdeshell, K.L., Furr, J., Sternberg, R.M., Butterworth, B.C., Durhan, E.J., Makynen, E.A., Ankley, G.T., Wilson, V.S., LeBlanc, G.A., Gray, L.E. Jr., 2007. Sensitivity of fetal rat testicular steroidogenesis to maternal prochloraz exposure and the underlying mechanism of inhibition. Toxicol. Sci. 97, 512-519.

Bordjiba, O., Steiman, R., Kadri, M., Semadi, A., Guiraud, P., 2001. Removal of herbicides from liquid media by fungi isolated from a contaminated soil. J. Environ. Qual. 30, 418426.

Bostofte, E., Bagger, P., Michael, A., Stakemann, G., 1990. Fertility prognosis for infertile men from two different population evaluated by the Cox regression model. Fertil. Steril. 54, 1100-1106.

Bratt, R.V., 2000. Environmental influence on reproductive health. Am. J. Obst. Gynecol. 70, 69-75.

Clegg, E.D., Perreault, D., Klinefelter, G.R., 2001. Assessment of male reproductive toxicity, in: Hayes, A.W. (Ed.), Principles and Methods of Toxicology. Taylor and Francis, Philadelphia, pp. 1263-1300.

Christiansen, S., Scholze, M., Dalgaard, M., Vinggaard, A.M., Axelstad, M., Kortenkamp, A., Hass, U., 2009. Synergistic disruption of external male sex organ development by a mixture of four antiandrogens. Environ. Health. Perspect. 117, 1839-1846.

Fernandes, G.S.A., Arena, A.C., Fernandez, C.D.B., Mercadante, A., Barbisan, L.F., Kempinas, W.G., 2007. Reproductive effects in male rats exposed to diuron. Reprod. Toxicol. 23, 106-12.

Fernandez, C.D.B., Porto, E.M., Arena, A.C., Kempinas, W.G., 2007. Effects of altered epididymal sperm transit time on sperm quality. Int. J. Androl. 31, 427-437.

Foley, G.L., 2001. Overview of Male Reproductive Pathology. Toxicol. Pathol. 29, 49-63.
Gray, L.E. Jr., Ostby, J., Monosson, E., Kelce, W.R., 1999. Environmental antiandrogens: low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicol. Ind. Health. 15, 48-64.

Hass, U., Scholze, M., Christiansen, S., Dalgaard, M., Vinggaard, A.M., Axelstad, M.,

Metzdorff, S.B., Kortenkamp, A., 2007. Combined exposure to anti-androgens exacerbates disruption of sexual differentiation in the rat. Environ. Health. Perspect. 115(Suppl. 1), 122-128.

Henry, M.J., Sisler, H.D., 1984. Effects of sterol biosynthesis-inhibiting (SBI) fungicides on cytochrome P-450 oxygenations in fungi. Pesticide Biochem. Physiol. 22, 262-275.

Hermo, L., Robaire, B., 2002. Epididymal cell types and their functions, in: Robaire, B., Hinton, B.T. (Eds.), The Epididymis - From Molecules to Clinical Practice. Kluwer Academic/Plenum Publisher, New York, pp. 81-102.

Jacobsen, P.R., Christiansen, S., Boberg, J., Nellemann, C., Hass, U., 2010. Combined exposure to endocrine disrupting pesticides impairs parturition, causes pup mortality and affects sexual differentiation in rats. Int. J. Androl. 33, 434-442.

Jégou, B., Auger, J., Multigner, L., Pineau, C., Thonneau, P., Spira, A., Jauannet, P. 1999. The saga of the sperm count decrease in humans and wild and farm animals, in: Gagnon, C. (Eds.), The male gamete: From basic to clinical applications. Cache River Press, Vienna, pp. 445-454.

Kempinas, W.G., Suarez, J.D., Roberts, N.L., Strader, L., Ferrell, J., Goldman, J.M., Narotsky, M.G., Perreault, S.D., Evenson, D.P., Ricker, D.D., Klinefelter, G.R., 1998. Fertility of rat epididymal sperm after chemically and surgically induced sympathectomy. Biol. Reprod. 59, 897-904.

Klinefelter, G.R., 2002. Robaire, B., Hinton, B.T. (Eds.), The Epididymis - From Molecules to Clinical Practice. Kluwer Academic Plenum Publisher, New York, pp. 359-369.

Klinefelter, G.R., Suarez, J.D., 1997. Toxicant-induced acceleration of epididymal sperm transit: androgen-dependent proteins may be involved. Reprod. Toxicol. 11, 511-519.

Klinefelter, G.R., Laskey, J.W., Kelce, W.R., Ferrell, J., Roberts, N.L., Suarez, J.D., Slott, V., 1994. Chloroethylmethanesulfonate- induced effects on the epididymis seem unrelated to altered leydig cell function. Biol. Reprod. 51, 82-91.

Klinefelter, G.R, Laskey, J.W., Roberts, N.R., Slott, V., Suarez J.D., 1990. Multiple Effects of Ethane Dimethanesulfonate on the Epididymis of Adult Rats. Toxicol. Appl. Pharmacol. 105, 271-287.

Laier, P., Metzdorff, S.B., Borch, J., Hagen, M.L., Hass, U., Christiansen, S., Axelstad, M., Kledal, T., Dalgaard, M., McKinnell, C., Brokken, L.J., Vinggaard, A.M., 2006. Mechanisms of action underlying the antiandrogen effects of the fungicide prochloraz. Toxicol. Appl. Pharmacol. 213, 160-171.

Laignelet, L., Rivière, J.-L., Lhuguenot, J.-C., 1992. Metabolism of an imidazole fungicide (prochloraz) in the rat after oral administration. Food Chem. Toxicol. 30, 575-583.

Mahadevan, M.M., Trounson, A.O., 1984. The influence of seminal characteristics on the success rate of human in vitro fertilization. Fertil. Steril. 42, 400-405.

Neubert, D., 2002. Reproductive toxicology: the science today. Teratog. Carcinog. Mutagen. 22, 159-174.

Noriega, N.C., Ostby, J., Lambright, C., Wilson, V.S., Gray, L.E. Jr., 2005. Late gestational exposure to the fungicide prochloraz delays the onset of parturition and causes reproductive malformations in male but no female offspring. Biol. Reprod. 72, 1324-1335. Orgebin-Crist, M.C., 1969. Studies on the function of the epididymis. Biol. Reprod. 1, 155175.

Ostby, J., Kelce, W.R., Lambright, C., Wolf, C.J., Mann, P., Gray, L.E. Jr., 1999. The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro. Toxicol. Ind. Health. 15, 80-93.

Paumgartten, F.J.R., 2003. Adverse health consequences of environmental exposure to 'endocrine disruptors'. ARBS Annu. Rev. Biomed. Sci. 5, 45-55.

Phillips, K.P., Tanphaichitr, N. Human Exposure to Endocrine Disrupters and Semen Quality. J. Toxicol. Environ. Health B. 11, 188-220, 2008.

Robb, G.W., Amman, R.P., Killian, G.J., 1978. Daily sperm production and epididymal sperm reserves of puberal and adult rats. J. Reprod. Fertil. 54, 103-107.

Rodríguez, C.M., Kirby, J.L., Hinton, B.T., 2002. The development of the epididymis, in: Robaire, B., Hinton, B.T. (Eds.), The Epididymis - From Molecules to Clinical Practice. Kluwer Academic / Plenum Publisher, New York, pp. 251-267.

Sullivan, R., Saez, F., Girouard, J., Frenette, G., 2005. Role of exossomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Molecules and Diseases. 35, 1-10.

Taxvig, C., Hass, U., Axelstad, M., Dalgaard, M., Boberg, J., Andeasen, H.R., Vinggaard A.M., 2007. Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicol. Sci. 100, 464-473.

Toshimori, K., 2003. Biology of spermatozoa maturation: an overview with introduction to this issue. Microsc. Res. Tech. 61, 1-6.
U.S. Environmental Protection Agency, 1996. Reproductive toxicity risk assessment guidelines. Fed. Reg. 61, 56273-56322.

Vinggaard, A.M., Christiansen, S., Laier, P., Poulsen, M.E., Breinholt, V., Jarfelt, K., Jacobsen, H., Dalgaard, M., Nellemann, C., Hass, U., 2005. Perinatal exposure to the fungicide prochloraz feminizes the male rat offspring. Toxicol. Sci. 85, 886-897.

Vinggaard, A.M., Nellemann, C., Dalgaard, M., Jorgensen, E.B., Andersen, H.R., 2002. Antiandrogenic effects in vitro and in vivo of the fungicide prochloraz. Toxicol. Sci. 69, 344-353.

Wilson, V.S., Lambright, C., Furr, J., Ostby, J., Wood, C., Held, G., Gray, L.E., Jr., 2004. Phthalate ester-induced gubernacular lesions are associated with reduced insl3 gene expression in the fetal rat testis. Toxicol. Lett. 146, 207-215.

Conflict of Interest statement

The authors declare that there are no conflicts of interest.

Figure legends

Figure 1. Sperm motility of adult rats control and treated with different doses of PCZ. Values expressed as median and interquartile intervals. ANOVA with a post hoc Tukey test; $\mathrm{p}>0.05$.

Table 1. Body and absolute and relative organs weight of adult rats control and treated with different doses of PCZ.

Parameters	Control	Treated $\mathbf{1 0 m g} / \mathbf{K g} / \mathbf{d a y}$	Treated $\mathbf{1 5 m g} / \mathbf{K g} / \mathbf{d a y}$	Treated $\mathbf{3 0 m g} / \mathbf{K g} / \mathbf{d a y}$
		423.51 ± 15.93	392.23 ± 8.42	411.08 ± 11.46
Final Body weight (g)				
Absolute organs weight	1.74 ± 0.05	1.61 ± 0.04	1.64 ± 0.04	1.67 ± 0.04
Testis (g)	579.64 ± 15.15	532.00 ± 16.02	572.34 ± 14.03	571.36 ± 18.35
Epididymis (mg)	436.64 ± 29.43	435.31 ± 28.85	450.21 ± 43.85	428.08 ± 38.78
Ventral prostate (mg)	89.09 ± 3.58	83.23 ± 4.14	96.92 ± 5.21	88.76 ± 4.20
Vas deferens (mg)	1114.50 ± 47.65	1031.30 ± 80.84	1122.00 ± 60.69	1153.10 ± 63.41
Seminal vesicle full (mg)	432.01 ± 25.41	439.98 ± 33.85	375.02 ± 32.72	377.85 ± 28.45
Seminal vesicle empty (mg)				
Relative organs weight	412.32 ± 11.41	413.76 ± 16.47	401.38 ± 10.65	412.17 ± 9.64
Testis $(\mathrm{g} / 100 \mathrm{~g})$	138.01 ± 4.96	135.90 ± 4.06	139.78 ± 3.78	140.96 ± 3.82
Epididymis $(\mathrm{mg} / 100 \mathrm{~g})$	104.18 ± 7.64	111.38 ± 7.82	108.99 ± 9.69	106.58 ± 10.32
Ventral prostate $(\mathrm{mg} / 100 \mathrm{~g})$	21.18 ± 0.93	21.32 ± 1.17	23.40 ± 1.47	22.08 ± 1.41
Vas deferens $(\mathrm{mg} / 100 \mathrm{~g})$	267.64 ± 18.90	262.17 ± 16.91	273.14 ± 13.12	285.06 ± 15.88
Seminal vesicle full $(\mathrm{mg} / 100 \mathrm{~g})$	103.13 ± 8.48	111.97 ± 8.15	91.87 ± 8.45	93.56 ± 7.41
Seminal vesicle empty $(\mathrm{mg} / 100 \mathrm{~g})$	9	10	10	10
N	9			10

Data expressed as means \pm SEM. ANOVA with a post hoc Tukey test; $\mathrm{p}>0.05$.

Table 2. Serum sexual hormone levels of adult rats control and exposed with different doses of PCZ.

	Plasma hormonal levels (mg/dl)		
Experimental groups	Testosterone	FSH	LH
Control $(\mathrm{n}=8)$	2.54 ± 0.51	4.51 ± 0.25	2.78 ± 0.57
10 mg PCZ $(\mathrm{n}=9)$	3.17 ± 0.78	4.75 ± 0.23	2.54 ± 0.60
$15 \mathrm{mg} \mathrm{PCZ}(\mathrm{n}=9)$	4.18 ± 0.69	4.62 ± 0.45	3.05 ± 0.52
30 mg PCZ $(\mathrm{n}=9)$	4.41 ± 0.30	4.95 ± 0.38	2.33 ± 0.40

Data expressed as means \pm SEM. Kruskal-Wallis test with a post hoc Dunn test; $\mathrm{p}>0.05$.

Table 3. Sperm counts of adult rats control and exposed with different doses of PCZ.

Experimental groups				
	Control	Treated 10mg/Kg/day	Treated 15mg/kg/day	Treated 30mg/Kg/day
Parameters				
Sperm counts and epididymal transit				
Sperm number in the testis ($\mathrm{x} 10^{6}$)	236.15 ± 8.06	220.66 ± 11.18	223.44 ± 6.43	229.75 ± 7.65
Daily sperm production ($\times 10^{6} /$ testis / day)	38.71 ± 1.32	36.17 ± 1.83	36.63 ± 1.05	37.66 ± 1.25
Sperm number in the caput / corpus epididymis ($\times 10^{6}$)	144.66 ± 9.80	125.57 ± 5.81	136.87 ± 7.44	140.27 ± 8.73
Sperm transit time in the caput/corpus (days)	3.76 ± 0.28	3.49 ± 0.55	3.73 ± 0.17	3.72 ± 0.55
Sperm number in the cauda epididymis (x10 ${ }^{6}$)	251.79 ± 9.34	221.00 ± 14.65	248.14 ± 11.23	249.50 ± 13.02
Sperm transit time in the cauda (days)	6.56 ± 0.33	6.11 ± 0.38	6.81 ± 0.35	6.65 ± 0.35
N	8	9	10	9

Data expressed as means \pm SEM. ANOVA with a post hoc Tukey test; $\mathrm{p}>0.05$.

Table 4. Fertility parameters after in utero artificial insemination of adult rats control and exposed with different doses of PCZ.

Parameters	Experimental groups			
	$\begin{gathered} \text { Control } \\ (\mathrm{n}=9) \end{gathered}$	$\begin{gathered} \text { Treated } \\ 10 \mathrm{mg} / \mathrm{Kg} / \text { day } \\ (\mathrm{n}=10) \end{gathered}$	$\begin{gathered} \text { Treated } \\ 15 \mathrm{mg} / \mathrm{Kg} / \text { day } \\ (\mathrm{n}=7) \end{gathered}$	$\begin{gathered} \text { Treated } \\ 30 \mathrm{mg} / \mathrm{Kg} / \mathrm{day} \\ (\mathrm{n}=8) \end{gathered}$
${ }^{\text {a }}$ Body weight of dams (g)	348.68 ± 10.83	350.21 ± 7.89	311.94 ± 14.57	326.70 ± 11.50
${ }^{\text {A }}$ Uterus weight with fetuses (g)	40.79 ± 4.71	38.87 ± 3.21	39.73 ± 6.63	27.90 ± 7.02
${ }^{\text {A }}$ Corpora lutea number	12.33 ± 0.83	12.80 ± 0.44	11.14 ± 0.46	12.88 ± 0.61
${ }^{\text {A }}$ Implant number	10.00 ± 1.11	8.20 ± 0.74	8.71 ± 1.30	7.75 ± 1.44
${ }^{\text {A }}$ Number of live fetuses	4.00 ± 1.29	6.75 ± 2.18	3.00 ± 0.84	3.75 ± 0.86
${ }^{\text {A }}$ Fetus weight (g)	8.56 ± 1.04	7.70 ± 0.70	8.29 ± 1.43	6.38 ± 1.58
${ }^{\text {B }}$ Pregnancy rate (\%)	90.00	100.00	77.78	88.89
${ }^{\text {B }}$ Fertility potential (\%)	83.33 (75.00-83.33)	65.39 (61.54-78.88)	91.67 (69.17-96.15)	63.94 (43.54-78.15)
${ }^{\text {B }}$ Pre-implantation loss (\%)	16.67 (16.67-25.00)	34.62 (29.12-38.46)	8.33 (3.85-30.83)	36.06 (21.85-56.46)
${ }^{\text {B }}$ Post-implantation loss (\%)	8.33 (6.67-16.67)	0.00 (0.00-5.77)	0.00 (0.00-8.71)	8.39 (0.00-13.57)

${ }^{\text {A }}$ Data expressed as means \pm SEM. Teste ANOVA ANOVA with a post hoc Dunnett test;
${ }^{B}$ Values expressed in median and interquartile intervals. Kruskal-Wallis test with a post hoc Dunn.

Progressive

Non-progressive

Immotile

Ponclusão

Os resultados obtidos no presente estudo sugerem que a exposição ao Procloraz, nestas condições experimentais e de acordo com os parâmetros avaliados, não provocou toxicidade reprodutiva em ratos machos adultos.

Referências

©ibliográficas

ABDALLAH, F.B.; SLIMA, A.B.; DAMMAK, L.I.; KESKES-AMMAR; MALLEK, Z. Comparative effects of dimethoate and deltamethrin on reproductive system in male mice. Andrologia, v. 42, pp.182-186, 2010.

ALMEIDA, W.F.; GARCIA, E.G. Exposição dos trabalhadores rurais aos agrotóxicos no Brasil. Revista Brasileira de Saúde Ocupacional, v.19, pp.7-11, 1991.

ANDERSEN, H.R.; SCHMIDT, I.M.; GRANDJEAN, P.; JENSEN, T.K.; BUDTZJØRGENSEN, E.; KJAERSTAD, M.B.; BAELUM, J.; NIELSEN, J.B.; SKAKKEBAEK, N.E.; MAIN, K.M. Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environmental Health Perspectives, v.116, pp.566572, 2008.

ANVISA. Agrotóxicos. 2010. Citação e referências a documentos eletrônicos. Disponível em: http://www.anvisa.gov.br/monografias/index.htm. Acesso em: 08 agos., 2011.

ANVISA. Agrotóxicos e Toxicologia: Programa de análise de resíduos de agrotóxicos em alimentos: relatório anual. Citação e referências a documentos eletrônicos. Disponível em http://www.anvisa.gov.br Acesso em: 24 nov., 2009.

AUGER, J.; KUNSTMANN, J.M.; CZYGLIK, F.; JOUANNET, P. Decline in semen quality among fertile men in Paris during the past 20 years. New England Journal of Medicine, v.332, pp.281-285, 1995.

BLYSTONE, C.R., LAMBRIGHT, C.S., HOWDESHELL, K.L., FURR, J., STERNBERG,
R.M., BUTTERWORTH, B.C., DURHAN, E.J., MAKYNEN, E.A., ANKLEY, G.T., WILSON, V.S., ET AL. Sensitivity of fetal rat testicular steroidogenesis to maternal prochloraz exposure and the underlying mechanism of inhibition. Toxicol. Sci. v.97, pp.512519, 2007.

BOCHNER, R. Sistema Nacional de Informações Tóxico-Farmacológicas - SINITOX e as intoxicações humanas por agrotóxicos no Brasil. Ciência e Saúde Coletiva, v.12(1), pp.73-89, 2007.

BORDJIBA, O.; STEIMAN, R.; KADRI, M.; SEMADI, A.; GUIRAUD, P. Removal of herbicides from liquid media by fungi isolated from a contaminated soil. Journal Environmental Quality, v.30, pp.418-426, 2001.

BRASIL. Ministério da Saúde, Protocolo de Atenção à Saúde dos Trabalhadores Expostos a Agrotóxicos. 2010. Citação e referências a documentos eletrônicos. Disponível em: http://www.saude.gov.br/portal/arquivos/pdf/integra_agrotoxicos.pdf Acesso em: 18 agos., 2011.

BRATT, R.V. Environmental influence on reproductive health. American Journal of Obstetrics \& Gynecology, v.70, pp.69-75, 2000.

CARBONE, P.; GIORDANO, F.; NORI, F.; MANTOVANI, A.; TARUSCIO, D.; LAURIA, L.; FIGA-TALAMANCA, I. The possible role of endocrine disrupting chemicals in the a etiology of cryptorchidism and hypospadias: a population- based case-control study in rural Sicily. International Journal of Andrology, v.30, pp.3-13, 2007.

CARPENTER, D.O.; ARCARO, K.F.; BUSH, B.; NIEMI, W.D.; ANG, S.; VAKHARIAD. D. Human health and chemical mixtures: An overview. Environment Health Perspectives, v. 106, pp.1263-1270, 1998.

CHRISTIANSEN, S.; SCHOLZE, M.; DALGAARD, M.; VINGGAARD, A.M.; AXELSTAD, M.; KORTENKAMP, A.; HASS, U. Synergistic disruption of external male sex organ development by a mixture of four antiandrogens. Environmental Health Perspectives, v.117, pp.1839-1846, 2009.

CZEIZEL, A. Increasing trends in congenital malformations of male external genitalia. Lancet 1, (8426), pp.462-463, 1985.

DEROSA, C.T.; EL-MASRI, H.A.; POHL, H.; CIBULAS, W.; MUMTAZ, M.M. Implications of chemical mixtures in public health practice. Journal Toxicology Environmental Health B, v. 7, pp.339-350, 2004.

EUSTACHE, F.; MONDON, F.; CANIVENC-LAVIER, M.C.; LESAFFRE, FULLA, Y.; BERGES, R.; CRAVEDI,J.P.; VAIMAN,D.; AUGER, J. Chronic Dietary Exposure to a Low-Dose Mixture of Genistein and Vinclozolin Modifies the Reproductive Axis, Testis Transcriptome, and Fertility. Environmental Health Perspectives, v.117(8), pp.1272-1279, 2009.

FARIA, N.M.X.; FACCHINI, L.A.; FASSA, A.G.; TOMASI, E. Processo de produção rural e saúde na serra gaúcha: um estudo descritivo. Cadernos de Saúde Pública, v.16(1),
pp.115-128, 2000.

FUNASA. Fundação Nacional de Saúde. Controle de Vetores: Procedimentos de Segurança, Ministério da Saúde, Brasília, 2010.

GONZAGA, M.C.; SANTOS, S.O. Avaliação das condições de trabalho inerentes ao uso de agrotóxicos nos municípios de Fátima do Sul, Glória de Dourados e Vicentina-Mato Grosso do Sul, 1990. Revista Brasileira de Saúde Ocupacional, v.20, pp.42-46, 1992.

GRAY, L.E.; OSTBY, J.; FURR, J.; WOLF, C.J.; LAMBRIGHT, C.; PARKS, L. ET AL. Effects of environmental anti-androgens on reproductive development in experimental animals. Hum Reprod Update, v. 7, pp.248-264, 2001.

GRAY L.E.JR.; OSTBY, J.; MONOSSON, E.; KELCE, W.R. Environmental antiandrogens: low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicology and Industrial Health, v.15, pp.48-64, 1999.

JACOBSEN P.R.; CHRISTIANSEN S.; BOBERG J.; NELLEMANN C.; HASS U. Combined exposure to endocrine disrupting pesticides impairs parturition, causes pup mortality and affects sexual differentiation in rats. Int. J. Andro..v. 33, pp. 434-442, 2010.

JARFELT, K.; DALGAARD, M.; HASS, U.; BORCH, J.; JACOBSEN, H.; LADEFOGED, O. Antiandrogenic effects in male rats perinatally exposed to a mixture of di-(2-ethylhexyl)
phthalate and di-(2-ethylhexyl) adipate. Reproductive Toxicology, v.19, pp.505-515, 2005.

KAVLOCK, R.J. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environmental Health Perspectives, v.104, pp.715-740, 1996.

KELCE, W.R.; LAMBRIGHT, C.R.; GRAY, L.E.; ROBERTS, K.P. Vinclozolin and p'p'DDE alter androgen-dependent gene expression: in vivo confirmation of an androgen receptor-mediated mechanism. Toxicology and Applied Pharmacology, v.142, pp.192-200, 1997.

KRISTENSEN, P.; IRGENS, L.M.; ANDERSEN, A.; BYE, A.S.; SUNDHEIM, L. Birth defects among offspring of Norwegian farmers, Epidemiology, v.8, pp.1967-1991, 1997.

LAIER, P.; METZDORFF, S.B.; BORCH, J.; HAGEN, M.L.; HASS, U. CHRISTIANSEN, S. ET AL. Mechanisms of action underlying the antiandrogenic effects of the fungicide prochloraz. Toxicology and Applied Pharmacology, v.213, pp.160-171, 2006.

MANTOVANI, A.; MARANGHI, F.; PURIFICATO, I.; MACRİ, A. Assessment of feed additives and contaminants: An essential component of food safety. Ann. Ist. Super. Sanita, v. 42, pp.427-432, 2006.

MATLAI, P.; BERAL, V. Trends in congenital malformations of external genitalia. Lancet 1,(8420), pp.108, 1985.

MESQUITA, S.A. Avaliação da contaminação do leite materno por pesticidas organoclorados persistentes em mulheres doadoras do banco de leite do Instituto Fernandes Figueira, RJ. Dissertação de Mestrado apresentada à Pós-Graduação à Escola Nacional de Saúde/Fundação Oswaldo Cruz, 2001.

MOREIRA, J.C.; JACOB, S.C.; PERES, F.; LIMA, J. S.; MEYER, A.; OLIVEIRA-SILVA, J.J.; SARCINELLI, P.N.; BATISTA, D.F.; EGLER, M. ET AL. Avaliação integrada do impacto do uso de agrotóxicos sobre a saúde humana em uma comunidade agrícola de Nova Friburgo, RJ. Ciência e Saúde Coletiva, v.7(2), pp.299-311, 2002.

MOSER, V.C.; BARONE, S. JR.; SMIALOWICZ, R.J.; HARRIS, M.W.; DAVIS, B.J.; OVERSTREET, D.; MAUNEY, M.; CHAPIN, R.E. The effects of perinatal tebuconazole exposure on adult neurological, immunological, and reproductive function in rats. Toxicol $S c i$, v.62, pp.339-352, 2001.

NETHERSELL, A.B.; DRAKE, L.K.; SIKORA, K. The increasing incidence of testicular cancer in East Anglia. British Journal of Cancer, v.50, pp.377-380, 1984.

NEUBERT, D. Reproductive toxicology: the science today. Teratogenesis, carcinogenesis, and mutagenesis, v.22, pp.159-174, 2002.

NELLEMANN, C.; DALGAARD, M.; LAM, H. R.; VINGGAARD, A. M. The combined effects of vinclozolin and procymidone do not deviate from expected additivity in vitro and in vivo. Toxicol. Sci. v.71, pp.251-262, 2003.

NEUBERT, D. Vulnerability of the endocrine system to xenobiotic influence. Regulatory Toxicology and Pharmacology, v.26, pp.9-29, 1997.

NORIEGA, N.C.; OSTBY, J.; LAMBRIGHT, C.; WILSON, V.S.; GRAY, L.E.JR. Late gestacional exposure to the fungicide prochloraz delays the onset of parturition and causes reproductive malformations in male but not female rat offspring. Biology Reproduction, v.72, pp.1324-1335, 2005.

NOURIZADEH-LILLABADI, R.; LYCHE, J.L.; ALMAAS, C.; STAVIK, B.; MOE, S.J.; ALEKSANDERSEN, M.; BERG, V.; JAKOBSEN, K.S.; STENSETH, N.C.; SKRE, J.U.; ALESTRM, P.; ROPSTAD, E. Transcriptional regulation in liver and testis associated with developmental and reproductive effects in male zebrafish exposed to natural mixtures of persistent organic pollutants (POP). Journal Toxicology Environment Health A, v. 72, pp.112-130, 2009.

ORGANIZAÇÃO PANAMERICANA DA SAÚDE (OPAS). Manual de vigilância da saúde de populações expostas a agrotóxicos. Escritório regional da organização mundial da saúde, v.2, 1996.

ORGANIZAÇÃO PARA AGRICULTURA E ALIMENTAÇÃO DAS NAÇÕES UNIDAS (FAO). Evaluations of some pesticide residues in food. Food and Agriculture Organization of the United Nations, sup 20, pp.299-353, 1980.

PARKS, L.G.; OSTBY, J.S.; LAMBRIGHT, C.R.; ABBOTT, B.D.; KLINEFELTER, G.R.;

BARLOW, N.J.; GRAY, L.E.J. The plasticizer di-ethylhexyl phthalate induces malformations by decreasing fetal testosterone synyhesis during sexual differentiation in the male rat. Toxicol. Sci., v.58, pp.339-349, 2000.

PAUMGARTTEN, F.J.R. Adverse health consequences of environmental exposure to 'endocrine disruptors'. Annual Review of Biomedical Sciences, v.5, pp.45-55, 2003.

PEROBELLI, J.E.; MARTINEZ, M.F.; FRANCHI, C.A.S.; FERNANDEZ, C.D.B.; CAMARGO, J.L.V.; KEMPINAS, W.G. Decreased Sperm Motility in Rats Orally Exposed to Single or Mixed Pesticides. Journal of Toxicology and Environmental Health, Part A, v.73, pp.991-1002, 2010.

PHILLIPS, K.P.; TANPHAICHITR, N. Human Exposure to Endocrine Disrupters and Semen Quality. Journal of Toxicology and Environmental Health, Part B, v. 11(3-4), pp.188-220, 2008.

PIERIK, F.H.; BURDORF, A.; DEDDENS, J.A.; JUTTMANN, R.E.; WEBER, R.F. Maternal and paternal risk factors for cryptorchidism and hypospadias: a case-control study in newborn boys. Environ Health Perspectives, v.112, pp.1570-1576, 2004.

PIKE, M.C.; CHILVERS, C.E..; BOBROW, L.G. Classification of testicular cancer in incidence and mortality statistics. British Journal of Cancer, v.56, pp.83-85, 1987.

RIDER, C.V.; FURR, J.R.; WILSON, V.S.; GRAY, L.E. JR. Cumulative effects of in utero administration of mixtures of reproductive toxicants that disrupt common target tissues via diverse mechanisms of toxicity. International Journal of Andrology, v.33, pp.443-462, 2010.

SHARPE, R.M.; SKAKKEBAEK, N.E. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract?. Lancet, (35), pp.1392-1395, 1993.

SOCIEDADE BRASILEIRA DE UROLOGIA-SBU, 2010. Tumores do Testículo. Câncer Urológico, Disponível em: http://www.sbu.org.br/2010/03/tumores-do-testiculo, acesso em: 26/11/2011.

SOKOL, R.Z. The hypothalamic-pituitary-gonadal axis as a target for toxicants. In: Sipes, G.; McQueen, C.A.; Gandolfi, A.J. Comprehensive toxicology. Cambridge University Press, Cambridge, pp.87-89, 1997.

TARIN, D. Tissue interactions and the maintenance of histological structure in adults. In: D. Tarin, (Eds). Tissue Interactions in Carcinogenesis. Academic Press, London, pp.81-94, 1972.

TAXVIG, C.; HASS, U.; AXELSTAD, M.; DALGAARD, M.; BOBERG, J.; ANDEASEN, H.R.; VINGGAARD, A.M. Endocrine-disrupting activities in vivo of the fungicides tebuconazole and epoxiconazole. Toxicol Sci, v.100, pp. 464-473, 2007.

VEERAMACHANENI, D.N.R. Impact of environmental pollutants on the male: effects on germ cell differentiation. Animal Reproduction Science, v.105, pp.144-157, 2008.

VINGGAARD, A.M.; NELLEMANN, C.; DALGAARD, M.; JORGENSEN, E.B.; ANDERSEN, H.R. Antiandrogenic effects in vitro and in vivo of the fungicide prochloraz.

Toxicol. Sci. v.69, pp.344-353, 2002.

VINGGAARD, A.M., CHRISTIANSEN, S., LAIER, P., POULSEN, M.E., BREINHOLT, V., JARFELT, K., JACOBSEN, H., DALGAARD, M., NELLEMANN, C., HASS, U. Perinatal exposure to the fungicide prochloraz feminizes the male rat offspring. Toxicol. Sci. v.85, pp.886-897, 2005.

WEIDNER, I.S.; MOLLER, H.; JENSEN, T.K.; SKAKKEBAEK, N.E. Cryptorchidism and hypospadias in sons of gardeners and farmers. Environmental Health Perspectives, v.106, pp.793-796, 1998.

WHITLEY, R.; MEIKLE, A.W.; WATTS, N.B. Endocrinology. In: E.R. Ashwood, C.A. Burtis, Tietz textbook of clinical chemistry. Saunders Company, pp.1645-1660, 1994.

WILLINGHAM, E.; AGRAS, K.; DE SOUZA, J.; KONIJETI, R.; YUCEL, S.; RICKIE, W.; CUNHA, G.R.; BASKIN, L.S. Steroid receptors and mammalian penile development: an unexpected role for progesterone receptor? The Journal of Urology, v.176, pp.728-733, 2006.

WORLD HEALTH ORGANIZATION (WHO). The WHO recommended classification of pesticides by hazard. WHO, 2002.

WORLD HEALTH ORGANIZATION (WHO). Public health impact of pesticides used in agriculture. WHO, 1990.

Figuras nào apresentada no artigo

Fotomicrografias de cortes transversais de testículos de ratos adultos, coloração em HE. (A) Grupo Controle, (B) Grupo tratado com $10 \mathrm{mg} / \mathrm{Kg} /$ dia de PCZ , (C) Grupo tratado com $15 \mathrm{mg} / \mathrm{Kg} /$ dia de PCZ , (D) Grupo tratado com $30 \mathrm{mg} / \mathrm{Kg} /$ dia de PCZ . $\mathrm{E}=$ Epitélio seminífero; In = Interstício; L= Lúmen. (200x).

Fotomicrografias de cortes longitudinais da região da cabeça do epidídimo de ratos adultos, coloração em HE. (A) Grupo Controle, (B) Grupo tratado com $10 \mathrm{mg} / \mathrm{Kg} /$ dia de PCZ, (C) Grupo tratado com $15 \mathrm{mg} / \mathrm{Kg} /$ dia de PCZ, (D) Grupo tratado com $30 \mathrm{mg} / \mathrm{Kg} /$ dia de PCZ. E= Epitélio; In = Interstício; sp= Espermatozoides no lúmen epididimário. (200x).

Fotomicrografias de cortes longitudinais da região da cauda do epidídimo de ratos adultos, coloração em HE. (A) Grupo Controle, (B) Grupo tratado com $10 \mathrm{mg} / \mathrm{Kg} /$ dia de PCZ , (C) Grupo tratado com $15 \mathrm{mg} / \mathrm{Kg} /$ dia de PCZ , (D) Grupo tratado com $30 \mathrm{mg} / \mathrm{Kg} /$ dia de PCZ . E= Epitélio; In = Interstício; $\mathrm{sp}=$ Espermatozoides no lúmen epididimário. (200x).

CERTIFICADO

Certificamos que o Protocolo n° 211-CEEA, sobre "Investigação da toxicidade reprodutiva do fungicida procloraz, com ênfase sobre aspectos morfofuncionais do epidídimo de ratos adultos", sob a responsabilidade de Wilma De Grava Kempinas, está de acordo com os Princípios Éticos na Experimentação Animal adotado pelo Colégio Brasileiro de Experimentação Animal (COBEA) e foi aprovado "Ad referendum" da COMISSÃO DE ÉTICA NA EXPERIMENTAÇÃO ANIMAL (CEEA), nesta data.

Botucatu, 4 de maio de 2010.

