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Differential expression of myogenic regulatory factor MyoD in pacu skeletal
muscle (Piaractus mesopotamicus Holmberg 1887: Serrasalminae, Characidae,
Teleostei) during juvenile and adult growth phases
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c UNESP, Department of Biostatistics, 18618-000 Botucatu, SP, Brazil

1. Introduction

Fish skeletal muscle is predominantly composed of white muscle,
which never comprises less than 70% of the bulk of myotomal
muscle and constitutes the edible part of the fish (Zhang et al., 1996).
White muscle is made up of glycolytic metabolism and fast
contracting muscle fibers (Driedzic and Hochachka, 1976) used in

and Johnston, 1988). Red muscle forms a thin superficial la
generally making up less than 30% of total musculature (Gr
Walker and Pull, 1975; Hoyle et al., 1986; Luther et al., 1995).
muscle fibers display aerobic metabolism and slow contract
they are associated with slow cruise swimming such as migra
and foraging (Bone, 1966; Jonhston et al., 1977). There is
intermediate layer between red and white musculature which

A R T I C L E I N F O

Article history:

Received 7 December 2007

Received in revised form

19 February 2008

Accepted 20 February 2008

Keywords:

Fish

Skeletal muscle growth

Hyperplasia

Hypertrophy

Semi-quantitative RT-PCR

A B S T R A C T

Skeletal muscle is the edible part of the fish. It grows by hypertrophy and hyperplasia, events regulate

differential expression of myogenic regulatory factors (MRFs). The study of muscle growth mechani

in fish is very important in fish farming development. Pacu (Piaractus mesopotamicus) is one of the m

important food species farmed in Brazil and has been extensively used in Brazilian aquaculture progra

The aim of this study was to analyze hyperplasia and hypertrophy and the MRF MyoD expression pat

in skeletal muscle of pacu (P. mesopotamicus) during juvenile and adult growth stages. Juvenile (n = 5)

adult (n = 5) fish were anaesthetized, sacrificed, and weight (g) and total length (cm) determined. W

dorsal region muscle samples were collected and immersed in liquid nitrogen. Transverse sect

(10 mm thick) were stained with Haematoxilin–Eosin (HE) for morphological and morphometric anal

Smallest fiber diameter from 100 muscle fibers per animal was calculated in each growth phase. Th

fibers were grouped into three classes (<20, 20–50, and >50 mm) to evaluate hypertrophy

hyperplasia in white skeletal muscle. MyoD gene expression was determined by semi-quantitative

PCR. PCR products were cloned and sequenced. Juvenile and adult pacu skeletal muscle had sim

morphology. The large number of <20 mm diameter muscle fibers observed in juvenile fish confi

active hyperplasia. In adult fish, most fibers were over 50 mm diameter and denote more intense mu

fiber hypertrophy. The MyoD mRNA level in juveniles was higher than in adults. A consensus pa

sequence for MyoD gene (338 base pairs) was obtained. The Pacu MyoD nucleotide sequence displa

high similarity several vertebrates, including teleosts. The differential MyoD gene expression observe

pacu white muscle is possibly related to differences in growth patterns during the phases analyzed, w

hyperplasia predominant in juveniles and hypertrophy in adult fish. These results should provi

foundation for understanding the molecular control of skeletal muscle growth in economically impor

Brazilian species, with a view to improving production quality.
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intermediate characteristics (Sänger and Stoiber, 2001).
Fish muscle growth is a plastic mechanism involving pop

tions of myogenic precursor cells, also called adult myoblas
myosatellite cells (Johnston, 1999). These cells provide
al expression of myogenic regulatory factor MyoD in pacu skeletal
Characidae, Teleostei) during juvenile and adult growth phases,
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ntial nuclei for new muscle fiber formation (hyperplasia) and
ertrophy (Koumans and Akster, 1995). During hypertrophic

th, as fibers expand they absorb myoblast nuclei in order to
ntain a relatively constant nuclear to cytoplasmatic ratio
mans et al., 1994). In hyperplasic growth, new fibers form on
surface of existing fibers by myoblasts fusing to form

tinucleated myotubes (Johnston, 1999; Rowlerson and Veg-
i, 2001). Final body weight depends on both hypertrophy and
erplasia in muscle growth. In large, fast growing fish,
erplasia is particularly active during the larval and juvenile
es (Weatherley and Gill, 1984). In small, slow-growing species,
contribution during adult life is low and muscle growth
arily involves hypertrophy of fibers formed in the embryo and

ng the early larval stage (Weatherley and Gill, 1984; Weath-
y et al., 1988).
yperplasia and hypertrophy mechanisms are regulated by the
ential expression of members of the myogenic regulatory
r (MRF) family which include MyoD, Myf5, Myogenin, and
4 (Watabe, 1999, 2001). MRFs are transcription factors that
e a highly conserved central region termed the basic helix–
–helix (bHLH) domain (Edmonson and Olson, 1993) which
iates sequence-specific DNA binding called E-box, which is
d in the promoters regions of many skeletal muscle specific
s (Lassar et al., 1989; Murre et al., 1989; Blackwell and

ntraub, 1990).
he primary MRFs, MyoD and Myf5, direct proliferating
genic progenitor cells towards a myogenic lineage, whereas
secondary MRFs, Myogenin and MRF4, control the differ-
ation and fusion of myoblasts to form myofibers (Megeney
Rudnicki, 1995; Rudnicki and Jaenisch, 1995; Watabe, 1999).
er Johansen and Overturf (2005), during the initial growth

ses, myoblast proliferation and hyperplasia can be inferred by
high expression of MyoD and Myf5, whereas Myogenin and
4 expression can be related to myoblast differentiation and

ertrophy, more intense during adult growth phase. Under-
ding the molecular control of postembryonic muscle growth
sh is one of the most important factors in successful

aculture which accounts for 30% of global fish production
et al., 2006).

he neotropical characid pacu (Piaractus mesopotamicus) has
extensively used in Brazilian aquaculture programs

nandez, 1989; Urbinati and Gonçalves, 2005). It is an
ivorous fish and is one of the most important food species
ed in the Pantanal wetlands area of the Paraná-Paraguai

n (Godoy, 1975). It is an autochthon species with immense
omic importance in South American commercial fishing
lding, 1981). Pacu is a fast growing fish with a large final
(Bernardino and Colares de Melo, 1989) which depends on

erplastic and hypertrophic muscle growth mechanisms (Dal
et al., 2000).
ince there are no studies focusing on the molecular basis of
cle growth regulation in pacu, the aim of our study was to
stigate hyperplasia and hypertrophy and the MRF MyoD
A expression pattern in pacu skeletal muscle during juvenile
adult growth phases.

2. Materials and methods

2.1. Fish samples

Specimens of pacu (P. mesopotamicus) were obtained from the
Aquaculture Center, UNESP, in Jaboticabal, São Paulo State, Brazil.
Two development stages, juvenile (n = 5) and adult (n = 5), were
used in this study. Fish were anaesthetized with MS-222 (Tricaine
Methanensulfonate; Sigma–Aldrich Corporation, St. Louis, MO,
USA) and sacrificed. Body weight (g) and total length (cm) were
determined.

2.2. Morphologic and morphometric analysis

In each development stage, white muscle samples from the
dorsal region (n = 5) were collected, immersed in n-hexane, cooled
in liquid nitrogen (�159 8C), and then stored at �80 8C in a freezer
until sectioning. Transverse 10 mm thick sections were obtained in
a �20 8C cryostat and stained with Haematoxilin–Eosin (HE)
(Bancroft and Steven, 1990). This was used to evaluate muscle
morphology and calculate fiber diameter (Dubowitz and Brooke,
1973).

Fiber cross-section diameter (mm) was estimated by measuring
100 white muscle fibers from each animal per group using a
compound microscope attached to a computerized imaging
analysis system (Leica Qwin, Wetzlar, Germany) using the smallest
diameter method (Dubowitz and Brooke, 1973). The smallest fiber
diameter was used to avoid any errors that might have been caused
by cross-sections not being completely true (Dubowitz and Brooke,
1973). White muscle fibers were grouped into three diameter
classes: <20, 20–50 and >50 mm, based on Valente et al. (1999).
Muscle fiber frequency was expressed as the number of fibers from
each diameter class relative to the total number of fibers measured.

2.3. Semi-quantitative RT-PCR analysis of mRNA for MyoD gene

Total RNA was extracted from frozen juvenile and adult white
muscle samples from each animal with TRIzol Reagent (Invitrogen
Life Technologies, Carlsbad, CA, USA), based on the guanidine
thiocyanate method (Chomczynski and Sacchi, 1987). Frozen
muscle samples were mechanically homogenized on ice in 1 mL of
ice-cold TRIzol reagent. Total RNA was solubilized in RNase-free
water and quantified by measuring optical density (OD) at 260 nm.
RNA purity was ensured by obtaining a 260/280 nm OD ratio
>1.70. These total RNA samples were then PCR amplified to ensure
no DNA contamination of RNA. Four micrograms of RNA were
reverse transcribed with random hexamer primers and First Strand
cDNA Synthesis Kit (GE Healthcare Bio-Sciences, Piscataway, NJ,
USA) in a total volume of 33 mL, according to standard methods.
One microliter of cDNA was then amplified using 0.2 mM of each
primer (Table 1), 1� PCR buffer minus Mg, 1.5 mM MgCl2, 0.2 mM
deoxyribonucleotide triphosphates, and one unit of Platinum Taq
DNA Polymerase (Invitrogen Life Technologies, Carlsbad, CA, USA)
in a final volume of 25 mL.

Primer pairs for MyoD were designed with reference to cDNA
nucleotide sequence from Ictalurus furcatus (GenBank accession
no. AY562555) (Table 1). PCR amplifications for MyoD gene were

1
otide sequences and annealing temperature (TA) of primers used for Polymerase Chain Reaction RT-PCR amplification of MyoD and 18S rRNA genes
s Sequence (50 ! 30) TA (8C) Cycles Size of amplified fragment (bp)

Forward: CTAACCAGAGGCTGCCHAAG 55 35 288

Reverse: CACGATGCTGGACAGACAGT

RNA Forward: TACCACATCCAAAGAAGGCAG 57 32 245

Reverse: TCGATCCCGAGATCCAACTAC

nnealing temperature; bp: base pairs.

ase cite this article in press as: de Almeida, F.L.A. et al., Differential expression of myogenic regulatory factor MyoD in pacu skeletal
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carried out for 3 min at 94 8C, followed by 35 cycles of denaturation
for 1 min at 94 8C, 1.5 min of annealing at 55 8C, 2 min extension at
72 8C, and an additional 5 min extension step. A set of primers
designed from the 18S ribosomal RNA (rRNA) consensus fish
sequences were used to amplify a segment of the 18S rRNA gene
(Tom et al., 2004) (Table 1). This gene was used as the
housekeeping gene in semi-quantitative RT-PCR analysis. PCR
amplifications for 18S rRNA gene were carried out for 2 min at
94 8C, followed by 32 cycles of denaturation for 1 min at 94 8C,
1 min of annealing at 57 8C, 1 min of extension at 72 8C and an
additional 5 min extension step.

Preliminary experiments were conducted to determine the
appropriate number of PCR cycles so that amplification product
was clearly visible on an agarose gel and could be quantified, but
also to assure that amplification was in the exponential range and
had not reached a plateau. The number of cycles tested was 28, 30,
32, 34, 35 and 36 for both genes studied.

PCR products were verified by cloning and sequencing; cDNA
from each muscle for both juvenile and adult groups were
amplified simultaneously using aliquots from the same PCR
mixture. After PCR amplification, 10 mL of each reaction under-
went electrophoresis on 1% agarose gels and was stained with
Sybr Safe (Invitrogen Life Technologies, São Paulo, SP, Brazil). The
bands were visualized under UV illumination (Hoefer UV-25) and
the gel image was retrieved using the EDAS program (Electro-
phoresis Documentation and Analysis System 120-Kodak Digital
Science 1D). Bands corresponding to each gene were quantified in
arbitrary units as optical density � band area, using Kodak one-
dimensional (1-D) image analysis system (Eastman Kodak,
Rochester, NY). PCR signals were normalized to the 18S rRNA
signal of the corresponding RT product to provide a semi-
quantitative estimate of MyoD gene expression. The PCR products
were run in duplicate on different gels for each gene and results
averaged.

2.4. cDNA cloning of MyoD

All amplified MyoD cDNA fragments were inserted into PGEM-T
plasmids (Promega Corporation, Madison, WI, USA) which were
used to transform competent Escherichia coli strain DH5a cells
(Invitrogen Life Technologies, Carlsbad, CA, USA). The positive
clones were sequenced on an ABI Prism 377 automatic DNA
sequencer (PerkinElmer) with a DYEnamic ET Terminator Cycle
Sequencing kit (GE Healthcare Bio-Sciences) as per manufacturer
instructions.

2.5. Nucleotide sequence analysis

Nucleotide sequences obtained from cloned MyoD-cDNA
were subjected to BLASTN (Altschul et al., 1997) searches at the
National Center for Biotechnology Information (NCBI) web site
(http://www.ncbi.nlm.nih.gov/blast) to confirm putative simi-
larity with MyoD gene. MyoD consensus sequence was obtained
using the Bioedit computer program (Hall, 1999). In addition,
MyoD sequences from different vertebrates obtained from NCBI,
were aligned using ClustalW software (http://www.ebi.ac.uk/
clustalw/) (Thompson et al., 1994) and submitted to Neighbor-
Joining (NJ) analyses employing the Kimura-2-parameter
genetic distance model (Kimura, 1980) using MEGA 3.1 software
(Kumar et al., 2004). Bootstrap resampling (Felsenstein, 1985)

weight analysis (Norman and Streiner, 1993). Total body length d
were expressed as mean � S.D. and analysis was performed using
Student’s unpaired t-test (Norman and Streiner, 1993).

White muscle fiber diameters and semi-quantitative RT-
data were expressed as mean � S.D. White muscle fiber diame
were analyzed using the Goodman test (Goodman, 1964, 1965
semi-quantitative RT-PCR analysis, comparisons between gro
were performed using the Student’s unpaired t-test. Differences w
considered significant at p < 0.05.

3. Results

3.1. Anatomical data

Median and total semi-amplitude weight was 16.45 � 9.37 g
juvenile and 768.00 � 238.50 g for adult fish ( p < 0.001). Mean
S.D. of total length was 10.29 � 1.29 cm for juvenile
35.36 � 2.8 cm for adult fish ( p < 0.001).

3.2. Morphologic and morphometric analysis

HE stain showed white skeletal muscle making up most of
muscle mass in both juvenile and adult fish. This muscle consis
of round or polygonal muscle fibers separated by fine sept
connective tissue, the endomysium. Thicker septa of connec
tissue separated muscle fibers into fascicles and making up
perimysium. Muscle fibers were distributed in a mosaic patt
characterizing fibers of different diameters (Fig. 1).

Frequency distribution of<20 mm diameter white muscle fib
in juvenile fish was significantly higher than in adults. Freque
Fig. 1. Transverse sections of white skeletal muscle of juvenile (a) and adult (b) pacu

(Piaractus mesopotamicus). A mosaic pattern of different muscle fibers diameters

composed of small fibers (arrows) between large fibers (arrowhead) can be

observed. Perimysium (*). Endomysium (e). HE. Scale bars: 50 mm.
was applied to assess support for individual nodes using 1000
replicates.

2.6. Statistical analysis

Body weight data were expressed as median � total semi-
amplitude. The non-parametric Mann–Whitney test was used for
Please cite this article in press as: de Almeida, F.L.A. et al., Differential expression of myogenic regulatory factor MyoD in pacu skeletal
muscle (Piaractus mesopotamicus Holmberg 1887: Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases,
Micron (2008), doi:10.1016/j.micron.2008.02.011
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ibution of >20 to <50 mm diameter white muscle fibers and
mm diameter fibers were significantly higher in adults than
niles (Fig. 2).

MyoD mRNA levels estimated by semi-quantitative RT-PCR

CR amplification of pacu cDNA for MyoD gene generated one
of approximately 300 base pairs (bp), and for pacu cDNA with

18S rRNA gene primer set generated one band of approxi-
ely 250 bp (Fig. 3a). Estimated MyoD mRNA level decreased in
adult group when compared to juveniles (juvenile 0.50 � 0.04
dult 0.26 � 0.05; p < 0.05) (Fig. 3b).

MyoD nucleotide sequence analysis

he PCR products obtained with the MyoD set of primers were
ed, and a total of six clones (three from juvenile and three from
t muscle samples) were sequenced. A consensus sequence was
uced from these clones and the exact total length of the cDNA

ment was 338 bp for MyoD (Fig. 4). The MyoD-cDNA consensus
eotide sequence was subject to Blastn and showed high
larity to MyoD of several vertebrates, including teleosts Danio

(Perciformes), Ictalurus punctatus, and Ameiurus catus

riformes). Phylogenetic analysis clustered the fish MyoD
ences into 100% of the recovered trees (Fig. 5).

iscussion

his study is the first description of differential myogenic
latory factor MyoD expression in skeletal muscle of P.

opotamicus during the juvenile and adult growth phases.
D mRNA level was significantly higher in juvenile than in adult

orphological examination of skeletal muscle in pacu (P.

opotamicus) showed the majority of musculature in both
es composed of deep white compartment. This musculature
ains muscle mass with considerable economic significance
ng et al., 1996). White muscle morphology in both stages was
lar to other fish species (Fernandez et al., 2000; Dal Pai-Silva
l., 2003a,b; Aguiar et al., 2005). Although compartmentalized

muscle fiber distribution is common in fish (Scapolo et al., 1988;
Veggetti et al., 1993; Galloway et al., 1999; Johnston, 1999), fiber
distribution pattern can vary according to species (Te Kronnie
et al., 1983; Dal Pai-Silva et al., 1995a,b) and growth stage (Dal Pai-
Silva et al., 2003a,b).

As previously described by Dal Pai et al. (2000), juvenile and
adult phase pacu muscle fibers have a mosaic pattern distribution,
characterized by different diameter fibers; this has also been seen
in others fish species (Rowlerson and Veggetti, 2001). Frequency
distribution of <20 mm diameter muscle fibers was significantly
higher in juvenile fish and the frequency of>50 mm diameter fibers
was significantly higher in adult fish.

The large number of <20 mm diameter muscle fibers observed
in juvenile fish confirm an active hyperplastic growth process in
skeletal muscle during this developmental stage (Valente et al.,
1999; Rowlerson and Veggetti, 2001). Hyperplastic growth in
teleosts is mainly in two waves (Rowlerson and Veggetti, 2001).
The first is a continuation of embryonic myogenesis and takes
place during part of larval life generating new fibers along a
germinal or proliferative zone (Usher et al., 1994); it is responsible
for thickening muscle mass in early development stages (Rowler-
son and Veggetti, 2001; Johnston et al., 2003). This event is known
as stratified hyperplasia and occurs in most of fish species
(Johnston, 1999). The second, mosaic hyperplasia, occurs in fish
which grow to large sizes, such as the pacu, and new fiber

Fig. 3. MyoD and 18S rRNA representative RT-PCR profiles (a) and RNA content

estimated by RT-PCR (b) from white muscles in juvenile and adult fish. MyoD gene

expression was normalized to the 18S rRNA gene signal from the same RT product.

Normalized data are expressed as means W SE. *p < 0.05 statistical significance.

2. White muscle fiber diameter distribution in juvenile and adult pacu

actus mesopotamicus). Columns represent white fiber frequencies (%) in each

(asterisks in the column show size classes with significant variation;

.05).
. Consensus sequence (50 ! 30) for MyoD obtained from alignment of cloned cDNA sequences. Primer annealing regions are shadowed. H: Adenine, thiamine, or cytosine.

enine or guanine.
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production is found across the whole myotome. This results in a
mosaic pattern of different fiber diameters, as seen in pacu skeletal
muscle morphological analysis. Mosaic hyperplasia causes a large
increase in fiber numbers during juvenile growth and is very
important for commercial aquaculture species; this characteristic
is not seen in small species (Rowlerson and Veggetti, 2001). In
juvenile pacu, the mainly mosaic hyperplastic contribution was
higher than hypertrophy in skeletal muscle growth.

In adult pacu, a majority of >50 mm diameter fibers denotes
muscle fiber hypertrophy (Valente et al., 1999; Rowlerson and
Veggetti, 2001). According to Zimmerman and Lowery (1999), the
recruitment of new fibers during muscle growth stops when fish
reach about 44% of their final size; after this muscle growth is
mainly by hypertrophy. Although the commercially interesting
size of the pacu is not fixed, our study showed that muscle fiber
recruitment in the adult phase was lower than in the juvenile
phase.

Hyperplasia and hypertrophy in fish muscle growth is
dependent on the activation, proliferation, and differentiation of
adult myoblast or myosatellite cells (Koumans and Akster, 1995;
Johnston, 1999). These processes are regulated by the sequential
expression of transcription factors known as myogenic regulatory
factors (Watabe, 1999, 2001).

MRF expression levels play an essential role during myogenesis
and are related to myoblast specification and differentiation, and
regulate muscle development and growth in growing fish (Zhang
et al., 2006). In flounder (Paralichthys olivaceus) MyoD expression
was detected in precursor muscle cells during the initial phases of
embryogenesis (Zhang et al., 2006). Johansen and Overturf (2005)
showed continuous differential MRF (MyoD, Myf5, Myogenin and
MRF4) expression in rainbow trout (Oncorhyncus mykiss) skeletal
muscle during different growth phases. These authors inferred that
differential MRF expression may be related to muscle growth
mechanisms.

In our study MyoD mRNA level was significantly higher in
juvenile than adult pacu. During early development and the
juvenile stage, muscle growth occurs by intense recruitment of
new muscle fibers from the proliferation of undifferentiated
myogenic progenitor cells that express primary MRF, MyoD, and

In adult P. mesopotamicus, muscle growth was mainly
hypertrophy. In this stage, myoblast proliferation and hyperpl
are not significant, with MyoD expression being smaller than
juvenile fish (Johansen and Overturf, 2005). This can explain
low MyoD expression in adult pacu compared to their juve
counterparts.

Comparative analysis of pacu MyoD cDNA nucleotide seque
showed a close relationship for this gene in fish that were branc
out in relation to amphibians, birds, and mammals. The analys
the complete cDNA of MyoD of several representatives of the m
vertebrate groups will clarify the evolutionary history of M
among vertebrates.

The expression of genes that control muscle growth is
unknown in South American fish species. The results from
study should provide a foundation for understanding
molecular control of skeletal muscle growth in economic
important Brazilian species, with a view to improving produc
quality.
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