
Genetic association mapping and genome organization of maize
Jianming Yu and Edward S Buckler
Association mapping, a high-resolution method for mapping

quantitative trait loci based on linkage disequilibrium, holds

great promise for the dissection of complex genetic traits. The

recent assembly and characterization of maize association

mapping panels, development of improved statistical methods,

and successful association of candidate genes have begun to

realize the power of candidate-gene association mapping.

Although the complexity of the maize genome poses several

significant challenges to the application of association

mapping, the ongoing genome sequencing project will

ultimately allow for a thorough genome-wide examination of

nucleotide polymorphism-trait association.
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Introduction
Most traits of agricultural or evolutionary importance are

controlled by multiple quantitative trait loci (i.e. complex

traits). Genetic mapping and molecular characterization

of these functional loci facilitates genome-aided breeding

for crop improvements such as disease resistance, effi-

ciency of fertilizer use, and drought tolerance. Two of the

most commonly used tools for dissecting complex traits

are linkage analysis and association mapping [1,2]. Link-

age analysis exploits the shared inheritance of functional

polymorphisms and adjacent markers within families or

pedigrees of known ancestry. Linkage analysis in plants

has been typically conducted with experimental popula-

tions that are derived from a bi-parental cross. Although

based on the same fundamental principles of genetic

recombination as linkage analysis, association mapping

examines this shared inheritance for a collection of indi-

viduals often with unobserved ancestry. As the unob-

served ancestry can extend thousands of generations, the

shared inheritance will only persist for adjacent loci after
www.sciencedirect.com
these many generations of recombination. Essentially,

association mapping exploits historical and evolutionary

recombination at the population level [3,4].

By exploring deeper population genealogy rather than

family pedigree, association mapping offers three advan-

tages over linkage analysis: much higher mapping resolu-

tion; greater allele number and broader reference

population; and less research time in establishing an

association [5,6] (Figure 1).

Linkage analysis and association mapping, however, are

complimentary to each other in terms of providing prior

knowledge, cross-validation, and statistical power [7��].
Systematic comparisons of these two different approaches

have been reviewed elsewhere both in general [8�] and

more specifically in maize [7��]. Procedures for conduct-

ing an association mapping study in plants have also been

well documented [7��,9]. Here, we will focus on recent

advances in association mapping conducted in maize, and

discuss maize genome structure and its implications for

association mapping.

Linkage disequilibrium
The comparatively high-resolution provided by associa-

tion mapping is dependent upon the structure of linkage

disequilibrium (LD) across the genome. Linkage dise-

quilibrium (LD) refers to the non-random association of

alleles between genetic loci. Many genetic and non-

genetic factors, including recombination, drift, selection,

mating pattern, and admixture (i.e. a population of sub-

groups with different allele frequencies), affect the struc-

ture of LD [6,10]. The key to association mapping is the

LD between functional loci and markers that are physi-

cally linked. The decay of LD over physical distance in a

population determines the density of marker coverage

needed to perform an association analysis. For example, if

LD decays rapidly, then a higher marker density is

required to capture markers located close enough to

functional sites.

Studies have shown that LD levels vary both within and

between species [6]. For example, LD extends less than

1000 bp [11] for maize landraces and roughly 2000 bp for

diverse maize inbred lines [4], but can be as high as

100 kb for commercial elite inbred lines [12]. LD decay

can also vary considerably from locus to locus. For exam-

ple, significant LD was observed up to 4 kb for the Y1
locus (encoding phytonene synthase), but was seen at

only 1 kb for PSY2 (a putative phytonene synthase) in the

same maize population [13��]. A more recent study

showed that LD extends over 800 kb around Y1 [14�],
Current Opinion in Biotechnology 2006, 17:155–160
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Figure 1

Schematic comparison of various methods for identifying nucleotide polymorphism trait association in terms of resolution, research time and

allele number. BC, backcross.
a similar level to that observed for alcohol dehydrogenase

1 (adh1; 500 kb) [15]. This high level of LD over such a

long physical distance can be caused by strong selection

through recent maize breeding practice. Many LD stu-

dies have also been carried out in other plant species [16–

22].

Genome structure
A recent, large-scale sequence study revealed that the

maize genome contains approximately 59 000 genes,

accounting for 7.5% of the genome [23��]. Over half of

the genome (58%) is composed of all types of repeat

elements, mainly retroelements and DNA transposons.

Unknown sequences occupy the space between these

known repeat elements and identifiable coding regions,

accounting for the remaining 34.5%. Although about one-

third of maize genes are organized in tandem arrays, fewer

than half are present in two orthologous copies, indicating

a heavy loss of unlinked duplicated genes during the

diploidization process following the hybridization of two

progenitors [23��].

On the basis of single nucleotide polymorphism analysis,

another study predicted that about 1200 maize genes

were targets of selection during maize domestication or

subsequent improvement by modern breeding [24]. Of

these, several candidate genes with putative functions in

plant growth were found to be clustered near quantitative

trait loci (QTL) that contribute to phenotypic differences

between maize and teosinte, the closest wild relative of

maize. Association mapping offers a powerful opportunity

to continue the work necessary to validate these co-

localizations between candidate genes and QTL.
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Two other recent studies on the maize genome revealed

some potential difficulties for association mapping, owing

to sequence non-homology among maize inbred lines

[25,26��]. In both studies, researchers found that the

clusters of retrotransposons differ markedly in make-up

and location in different maize inbred lines. Gene move-

ment by Helitron transposons has been offered as an

explanation for this haplotype variability [27,28,29��,
30]. This sequence non-homology reduces recombination

and preserves LD, thereby limiting the success of asso-

ciation mapping. If candidate genes are located within a

long, non-colinear chromosome region, association ana-

lysis could result in the mapping of unrelated genes. Non-

homologous sequences identified thus far, however, have

often been found to be gene fragments rather than intact

genes [28,29��]. The impact of these sequences on can-

didate genes, gene expression and phenotype will require

further investigation.

Mapping populations
To date, a limited number of association mapping popu-

lations have been publicly reported in maize, perhaps

owing to the direct economic value such results hold for

private seed companies. The first public maize associa-

tion mapping population consisted of 102 diverse inbred

lines [4]. Newer versions have been characterized more

recently [31,32�], the latest of which includes 302 maize

inbred lines representing the diversity present in public

sector breeding programs around the world. A public

maize association mapping population with diverse germ-

plasm bases has also been assembled at the Institut

National de la Recherche Agronomique (INRA) [33],

and an additional population for mapping endosperm
www.sciencedirect.com
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Figure 2

Schematic diagram of the different types of population encountered in

association mapping studies. Examples and relevant statistical

methods for the analysis of the different population types are

described. (a) Ideal sample with subtle population structure and

familial relatedness (e.g. Centre d’Etude du Polyphorphisme Humain

[CEPH] grandparents), regression and genomic control (GC). (b)

Family-based sample (e.g. CEPH, Utah family), transmission

disequilibrium test (TDT), quantitative transmission disequilibrium test

(QTDT), GC, and mixed model (pedigree-based coancestry matrix and

relative kinship matrix). (c) Sample with population structure (e.g.

human admixture), structured association (SA) and GC. (d) Sample

with both population structure and familial relationships (e.g. maize

association panel), SA, GC, mixed model (population structure [Q] plus

relative kinship matrix [K]). (e) Sample with severe population structure

and familial relationships (e.g. rice or Arabidopsis association mapping

panel), methods unknown. The red and black color scheme indicates

the polymorphism and diversity.
color has been assembled with 75 public and private

maize inbred lines [13��].

A large-scale maize QTL mapping population (Nested

Association Mapping, NAM), comprising 5000 recombi-

nant inbred lines (RIL) derived from crossing each of 25

diverse maize inbred lines to B73, is currently under

development (Molecular and Functional Diversity of

the Maize Genome Project; http://www.panzea.org).

These lines were chosen to maximize the genetic diver-

sity in maize. As both LD and linkage information can be

simultaneously exploited, this population will provide the

maize research community with a unified mapping

resource that bridges linkage analysis and association

mapping.

Population structure
Samples used in association mapping studies can be

grouped by the level of population structure and

within-group familial relatedness [34��] (Figure 2). The

concern about population structure is that LD can be

caused by admixture of subpopulation, which leads to

false-positive results if not correctly controlled in statis-

tical analysis. Such false-positives arise when testing

random genetic markers with different frequencies in

subpopulations for a trait with parallel phenotypic differ-

ences. The complex evolutionary and breeding history in

maize [31,32�] and other species [22,35] has undoubtedly

created both population structure and complex familial

relationships. To reduce this risk, estimates of population

structure must be included in association analysis.

If, however, the distribution of functional alleles is highly

correlated with population structure, statistically control-

ling for population structure can result in false-negatives,

particularly for small sample sizes. Flowering time in

maize appears to be one trait for which this phenomenon

is common [32�], and other traits under local adaptation or

diversifying selection in different subpopulations may be

effected as well. Association studies, therefore, are best

carried out in independent populations with a large

sample size.

Two recent studies in maize serve to illustrate the above

scenario. In an attempt to validate the function of the

Dwarf8 (D8) locus, 71 elite European inbred lines were

genotyped for D8 polymorphism and phenotyped for flow-

ering time [36]. Although significant association was

detected without controlling for population structure, no

association resulted when the population structure was

controlled. By contrast, the association of D8 polymorphism

with flowering time has been validated in a large association

mapping population of 375 maize inbred lines [33].

Statistical approaches
Different statistical approaches have been designed to

deal with the population structure issue for different
www.sciencedirect.com
association samples [34��] (Figure 2). For family-based

samples, the transmission disequilibrium test (TDT) has

long been used to study the genetic basis for human

disease, whereas the quantitative TDT (QTDT) has

been employed in the dissection of quantitative traits.

To address the issue of population structure in popula-

tion-based samples, genomic control (GC) and structured

association (SA) are the two most common methods

utilized in both human and plant studies. With GC, a

set of random markers is used to estimate the degree of

inflation of the test statistics generated by population

structure, assuming such structure has a similar effect on

all loci [37]. By contrast, SA analysis first uses a set of

random markers to estimate population structure (Q), and

then incorporates this estimate into further statistical

analysis [38–40]. Modification of SA with logistic regres-

sion has been used in previous association studies [3,7��],
and a general linear model version is available in TAS-

SEL (http://www.maizegenetics.net).

A unified mixed-model approach for association mapping

that accounts for multiple levels of relatedness has
Current Opinion in Biotechnology 2006, 17:155–160
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recently been developed [34��]. In this method, random

markers are used to estimate Q and a relative kinship

matrix (K), which are then fit into a mixed-model frame-

work to test for marker-trait association. Application of

this new method to maize quantitative traits and human

gene expression data resulted in improved control of both

type I and type II error rates when compared with other

methods. As this mixed-model approach crosses the

boundary between family-based and population-based

samples, it provides a powerful complement to currently

available methods for association mapping [34��].

Examples of association mapping studies
In the first candidate-gene association mapping study in

plants, DNA sequence polymorphisms within the D8
locus were associated with flowering time [3]. This

research marked the first empirical association study in

any organism for which background molecular markers

were used to control for population structure [41]. Later

studies of the same population associated the candidate

gene su1 with sweetness taste [42], bt2, sh1 and sh2 with

kernel composition, and ae1 and sh2 with starch pasting

properties [7��]. In this latter study, principle component

analysis was used to cluster phenotypic traits into three

major groupings before association analyses, which served

to reduce multiple testing and also facilitated the inter-

pretation of the results for many correlated traits. In a

separate study, candidate genes a1 and whp1 were asso-

ciated with maysin synthesis after controlling for a pre-

viously determined epistatic p locus [43], illustrating the

importance of incorporating known candidate genes in

ensuing analyses.

Association mapping has also been used to successfully

associate candidate gene Y1 with maize endosperm

color [13��], a result later substantiated by linkage ana-

lysis [44]. A follow-up study on sequence diversity and

LD around the Y1 region revealed a significant reduction

in nucleotide diversity. This selective sweep extends

further upstream of Y1 [14�]. The extensive LD around

the Y1 region is purportedly caused by the qualitative

nature of the trait, recent timing of selection, and partial

genetic isolation of yellow germplasm after selection

[13��].

Progress continues to be made in deciphering the number

of QTL underlying complex traits in maize. A compre-

hensive linkage analysis study detected approximately 50

QTL underlying oil concentration in the maize kernel

[45], while QTL meta-analysis found 62 consensus QTL

for flowering time [46]. In silico mapping of QTL using a

mixed-model approach has been developed to exploit the

available genotypic, phenotypic, and pedigree data in

maize breeding programs [47]. Recent studies have also

shown that gene discovery can be initiated by analyzing

existing data for pedigreed maize inbred lines or hybrids

[47–49]. Simulation work, however, revealed that addi-
Current Opinion in Biotechnology 2006, 17:155–160
tional effort is needed to reduce the false discovery rate

[49], possibly owing to the extensive LD found within

pedigreed material [12,50].

As the above examples illustrate, association mapping

is especially useful for dissecting candidate genes under-

lying Mendelian traits (e.g. Y1 for endosperm color

and su1 for sweetness taste), owing to their relatively

simple genetics (few loci and accurate phenotypic mea-

surement) and strong imposed selection. For more com-

plex traits, candidate genes with relatively large effects

on traits with relatively high heritability (e.g. D8 for

flowering time) will associate first. Association has, how-

ever, been successfully established for traits with only

moderate heritability, such as starch concentration in

maize.

Conclusions
Although the maize genome presents many technical

challenges [51], the first genome sequencing project

was funded by the National Science Foundation of

USA (NSF), the United States Department of Agriculture

(USDA), and the Department of Energy (DOE) of USA

in November 2005. With the genome sequence in place,

comprehensive gene discovery can be initiated, providing

enormous opportunity for candidate-gene association

mapping studies. Moreover, as draft sequencing of

diverse inbred lines becomes increasingly practical, the

feasibility of genome-wide association mapping can be

further investigated.

Mutational studies, molecular and biochemical analyses,

linkage analysis, comparative genetics, and transgenic

studies remain essential building blocks in the further

advancement of association mapping, providing candi-

date genes and validating newly reported associations.

The availability of the Nested Association Mapping

(NAM) population in the next couple of years will permit

a high-resolution genome scan. Although genotyping

continues to decrease in cost, the expense and precision

of phenotyping pose lingering challenges that must be

addressed [32�]. Additional challenges include non-addi-

tive genetic effects and genotype and environment inter-

actions (i.e. genotypes differ in their relative performance

across environments) that are commonplace with the

evaluation of diverse germplasm in diverse environments

[7��]. However, with a better understanding of simple

scenarios, we will ultimately move towards more complex

issues such as dominance, epistasis, genotype and envir-

onment interaction, and heterosis.
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