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Why do we randomize?

Two reasons:

» After we have allowed for any expected patterns of variation
among units there will usually still be many ways of allocating
treatments to units. Doing it randomly removes any
subjective element from the allocation.

> |t justifies the usual form of analysis.

Remember our basic model, y;-) = p + t, + ;. What further
assumptions do we need to make?



Example

In a psychological experiment, 8 subjects, selected at random from
a large population, perform a task and are scored out of 20. It is
noted that the 4 female subjects get the highest scores.

M, 14 Fs 15
M, 13 Fs 15
My 12 F 16
M, 10 Fg 19

Could this be coincidence or does it indicate that women perform
this task better than men?

Interpretation is difficult - there are many possible coincidences. If
we look at enough ways of splitting up the eight subjects we are
bound to find some coincidence.

Before the experiment, what model would we have proposed?



Example

4 subjects are selected at random from a large population who
have been trained to perform the task and 4 are randomly selected
from a large population who have not been trained. The 4 from
the trained population get the highest scores.

GG 14 Ts 15
G 13 Te 15
G 12 T; 16
G 10 Tg 19

What does this tell us about the effect of training?

There is fairly strong evidence of a difference between the
populations. A two sample t-test gives a p-value of 0.026.

What would our model be in this case? Is it plausible?



Example

8 employees of a company work in an analytical laboratory. 4 of
the 8 are randomly selected to be trained to perform a new task.
All subjects are then scored out of 20. The 4 who received training

get the highest scores.

G 14
G 13
G 12
G 10

Does this indicate that training leads to better performance?

The alternative is that the randomization happened to select the 4
best subjects for training. We can quantify the probability that the
randomization would have done this without making any further

assumptions.

What is our model in this case?

Ts
Ts
T7
Ts

15
15
16
19



Randomization

This is the most important reason for randomizing treatments to
units. In the first example the lack of randomization made it
impossible to draw any such conclusions. In the second example
conclusions were weaker and could only be drawn by making strong
assumptions.



Randomization

The above is an example of a permutation test defined by the
randomization. An alternative (more general) way of carrying out
the same test is as follows:

1. Consider all possible randomizations of treatments to units
which could have occurred.

2. Assume the response in each unit would have remained
unchanged, i.e. assume the treatments have no effect (assume
Ho is true).

3. For each randomization, calculate the variance ratio (F-ratio).

4. The p-value is the proportion of randomizations which would
have given as large a variance ratio as the actual data.

The first stage in the test shows that the precise form of analysis is
defined by how the experiment was randomized.



Randomization

We will set up the theory for a completely randomized design for n

units with t treatments each applied to n; = % units.

Express the model as
Yi(ry = K+ tr + &,

>.;ei=0and >  t =0.
Perform randomization by:
1. writing down the combinatorial design;

2. randomly allocating units to unit labels.



Randomization

Over the population of possible randomizations, the above
deterministic model becomes the stochastic model.

n
Y,(r) =u+t + Zéijej,
j=1

where ;; = 1 if unit j is randomized to unit label / and §;; =0
otherwise.

> 16 =0and >, ej2 = (n— 1)o?, where o2 is the variance of

the €.
Then

ZZ eje = — Z ej2 = —(n—1)o.

i—1 I=1 i—=1
J 1% J



Randomization

We also have

n—1
Var(6;;) = —a :
1
COV((SU,&'/) = _ﬁ;
1

COV((')-,'J'7 5kj) = —?;

1

COV((SU, (5[(/) = m



Randomization

Letting e; = > 7, djje;, the model is

Yiiry = 1+ tr + €.

From the previous results, it is easy to show that E(e) = 0 and

V(e) = (I — ,17J) o2,

where J is a matrix of 1s.

€ satisfies the Gauss-Markov conditions, so least squares provides
minimum variance linear unbiased estimators of all parameters and
the residual mean square is the minimum variance unbiased
estimator of o2.



Randomization

Therefore the usual linear models analysis is still appropriate and is
completely defined by the randomization which has been done.

No assumption has been made that the units are a random sample
from some infinite population of potential units.

The Normal distributional results no longer hold, but are usually a
reasonable approximation. If we do not trust them, we should use
permutation tests and related confidence intervals.



Randomization

If the experimental units are a random sample from a large
population, the above theory still holds.

We might be able to make an additional assumption about the
distribution of €, e.g. that it is Normal, to justify parametric
inferences.

However, randomization is still useful because it provides additional
robustness to the failure of our assumption, i.e. the linear model is
still justified even if our assumption about the population is wrong.



Randomization

Infinite Normal theory model:

» Assumes units are a random sample from a normally
distributed population, with constant variance.

> Inferences apply to the infinite population from which the
units were sampled.
Finite randomization theory model:
> Assumes a finite set of units to which treatments are allocated
at random.
> Inferences apply only to the finite set of units.

So the analysis is always the same, but the conclusions which can
be drawn from the results depend on how the experimental units
were selected.



Randomization

If randomization leads to a valid analysis, why do we ever restrict
the randomization, e.g. by blocking?

» The analysis still depends on ¢ and so may be inefficient.

» The randomization theory, with appropriate modification,
follows for randomized block and other designs.



