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Restricted randomization

Note that, under randomization, inferences still depend on σ2, the
variance of unit effects around their mean. So if the units available
are highly variable, estimates will be imprecise.

Therefore we often restrict the randomization, e.g. by blocking.
Consider the randomized complete block design, i.e. we define
blocks of units which contain each treatment once and randomly
permute units to unit labels within the same block.



Restricted randomization

The model under randomization, for unit j in block i receiving
treatment r , is

Yij = µ+ tr +
∑
k

δi ;jkdik ,

where the mean of dik in block i is not 0, but bi , so we can write

Yij = µ+ tr + bi +
∑
k

δi ;jkeik ,

where eik have mean 0 and variance σ2 for each i .

This is again a linear model, which can be written

Yij = µ+ tr + bi + εij .



Restricted randomization

Note that σ2 is now the variance of unit effects around the mean
in the same block.

Hence the randomization should be restricted by blocking if
we can define groups of units within which we expect unit
effects to vary less than they do across the entire
experiment.

The definition of blocks is determined by what we know
about the units and not by the number of treatments we
have. Therefore it is often necessary to use incomplete block
designs, i.e. the number of units in a block is usually less than the
number of treatments, except when there are only a few
treatments.



Restricted randomization

In an incomplete block design, if possible we will randomly
permute blocks to block labels as well as randomly permuting units
to unit labels within each block. This ensures that each unit label
has an equal chance of being applied to each unit.

This gives the model

Yij = µ+ tr +
∑
l

γil

(
bl +

∑
k

δl ;jkelk

)
= µ+ tr +

∑
l

γilbl +
∑
l

∑
k

γilδl ;jkelk ,

where bl have mean 0 and variance σ2b and elk have mean 0 and
variance σ2 for each l .



Restricted randomization

This can be written as

Yij = µ+ tr + βi + εij ,

where βi is a random effect with variance σ2b and εij is a random
effect with variance σ2. This is a linear mixed model.

Note that each level of randomization (between blocks and within
blocks) leads to a random effect.

This is often denoted, using the Wilkinson-Rogers notation, as
Blocks/Units.



Restricted randomization

This extends to any number of nested levels of randomization
(strata), e.g. if blocks are arranged in superblocks, we randomly
permute superblocks, randomly permute blocks within superblocks
and randomly permute units within blocks, giving

Yijk = µ+ tr + ςi + βij + εijk .

This is expressed as Superblocks/Blocks/Units.



Restricted randomization

Randomization theory also works with two-way blocking (e.g. Latin
squares) and other crossed unit structures.

In a row-column design, with one unit in each row×column
combination, we would randomly permute rows and randomly
permute columns.

Then, for the unit in row i and column j ,

Yij = µ+ tr +
∑
k

∑
l

δikγjlakl

= µ+ tr +
∑
k

δik
∑
l

γjlakl ,

where the mean of akl in row k is rk .



Restricted randomization

So

Yij = µ+ tr +
∑
k

δik(rk +
∑
l

γjldkl)

= µ+ tr +
∑
k

δik rk +
∑
l

γjl
∑
k

δikdkl ,

where the mean of dkl in column l is cl . Hence,

Yij = µ+ tr +
∑
k

δik rk +
∑
l

γjl(cl +
∑
k

δikekl)

= µ+ tr +
∑
k

δik rk +
∑
l

γjlcl +
∑
k

∑
l

δikγjlekl .



Restricted randomization

This is written as

Yij = µ+ tr + ρi + κj + εij ,

where V (ρi ) = σ2r , V (κj) = σ2c and V (εij) = σ2.

In Wilkinson-Rogers notation we write Rows*Columns.

The nesting and crossing operators can be used to describe much
more general unit structures defined by whatever randomization is
done.

This can then be used to write down an appropriate linear mixed
model, where

I there is a random effect for each stage of randomization;

I there is an additional random effect for the interaction of each
pair of crossed effects.



Example

In a hen house, 32 chicken cages are arranged in 4 stacks of 4×2
cages. An experiment is randomized by permuting stacks,
permuting tiers and permuting cages within each stack×tier
combination.

Stack
I II III IV

Tier I
II
III
IV

Unit structure is (Stack*Tier)/Cage.

Model is
Yijk = µ+ tr + ςi + τj + υij + εijk .



Information from Separate Strata

In incomplete block designs, the usual analysis, with fixed block
effects, only uses information from within blocks. However, blocks
have been randomized, so block totals contain information about
the differences between treatments.

Blocks

T1 T1 T2 T1 T1 T2

T2 T3 T3 T2 T3 T3

Total yield 10 12 1 11 12 2

Is T1 clearly superior or did the randomization just lead to this
allocation of blocks to block labels?

This is the inter-block analysis. It is separate from the usual
intra-block analysis.



Notes

I The specific randomization determines the covariance
structure in the derived linear mixed model.

I Randomization theory applies to simple orthogonal block
structures, i.e. those made up from crossing and nesting of
block factors each of which defines equally sized blocks.

I Randomization theory gives a separate analysis in each
stratum, sometimes with information on treatments in
different strata.

I Least squares analysis in each stratum gives minimum
variance linear unbiased estimators of all treatment contrasts
(using the information in that stratum) and minimum variance
unbiased estimators of stratum variances.



Notes

I Randomization theory does not give a way of combining the
separate analyses from each stratum.

I Nowadays, strata are usually combined by using REML-GLS
analysis, but this depends on the normality of the random
effects.

I In some cases, an analysis using fixed block effects might give
a better approximation than an analysis using Normal random
block effects.

I I recommend always doing the separate analyses in each
stratum before any attempt is made to combine the analyses.



Other Forms of Analysis

The obvious alternative is to assume that the units are a sample
from a (possibly structured) population of potential units.

This allows inferences to be made about the population of
potential units, not just those used in the experiment, but is reliant
on the additional assumptions about the nature of the population.

Then, for example, the randomized block model arises if we
assume the units in different blocks are random samples from
different populations. If the block populations are assumed to be a
sample from a superpopulation, we have random block effects, as
in the randomization analysis.



Other Forms of Analysis

If we randomize the experiment in a way that corresponds to the
population structure, the two analyses are identical.

This is obviously a good idea!

Then only the generalization from the units used to the population
depends on the assumptions made about the population. The
analysis will be valid in any case.

What if we randomize in a different way to the population
structure?



Other Forms of Analysis

If the population has the structure of a randomized complete block
design, but we use a completely randomized design:

I if we analyse according to randomization, variances will be
higher than necessary;

I if we analyse according to population, the design might be
inefficient and the analysis is not justified by the
randomization.

If the population has the structure of a completely randomized
design, but we use a randomized complete block design:

I if we analyse according to the randomization, we lose only a
few residual degrees of freedom;

I if we analyse according to the population, the analysis is not
justified by randomization.



Other Forms of Analysis

We should randomize the experiment using all blocking factors
that we think might be important in the population, as well as any
others that are convenient.

We need only ensure that we have sufficient (10-20?) residual
degrees of freedom.

In the analysis we should include all blocking factors defined by the
randomization.

We might consider including in the analysis any other structure
that we suspect the population might have (analysis of covariance).



Other Forms of Analysis

This demonstrates the intimate connection between models for the
population, randomization and data analysis.

We should not ignore reasonable population models when
designing the experiment and we should not ignore the design
when modelling the data.

In particular, we should always include in the analysis all structure
implied by the randomization. This allows us to see the need for
any additional structure which will depend on stronger
assumptions.



Other Forms of Analysis

Pure randomization-based analysis is frequentist, but it provides a
natural baseline for a model-based analysis, whether likelihood or
Bayesian.

The Bayesian viewpoint does not object to randomization and
should not object to including blocking factors defined by the
randomization in the model. Doing so helps to identify and justify
the appropriate exchangeability assumptions.

I recommend always starting with the simple stratum-by-stratum
randomization-based analysis. This allows us to separate:

I conclusions obtained from the randomization-based analysis
(which are robust to assumptions);

I conclusions which depend on the model assumptions;

I conclusions which depend on a particular prior distribution.



Models for Unit Effects

Spatial analysis of field experiments and modelling time trends in
laboratory experiments have become fashionable.

The reason is an alleged increase in precision. These methods
involve replacing the unit effect ei in our basic model with
something more complex, e.g. an AR(1)×AR(1) process in field
experiments.

Some authors recommend excluding block effects from the model
when doing spatial analysis.

Of course, I disagree! Even if the blocks have no physical meaning,
the act of randomization means they should be included in the
model, so that we can separate conclusions that depend on the
modelling assumptions from those that do not.



Models for Unit Effects

The model implied by the randomization will often be adequate, so
that no other strong assumptions are needed.

When the stronger assumptions lead to great increases in
efficiency, it is often a sign that the experiment has been badly
designed, e.g. with blocks that are too large.

Rescuing badly designed experiments seems to be the main
purpose of these methods. However, the “rescue” is so dependent
on assumptions that it is questionable whether these should still be
called experiments.


