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Treatment Structures

The precise form of treatments depends on the experimental
objectives. Some distinctions:

I Treatments which are combinations of levels of several factors,
or treatments which are levels of a single factor.

I Qualitative or quantitative factor levels.

I Factor levels which are of specific interest (fixed effects), or
qualitative factor levels which are a sample from a population
(random effects).



Treatment Structures

The initial form of analysis of variance is the same in each case,
i.e. if we do not break down Treatment sum of squares into
different components, and is defined by the unit structure.

Often we are interested in specific treatment contrasts, e.g. main
effects and interactions when the treatments have a factorial
structure. These correspond to a breakdown of the Treatment sum
of squares into single degree of freedom components.

We might fit particular models of the treatment effect, especially
for treatment factors with continuous levels. These might require
fewer degrees of freedom than the Treatment sum of squares.



Factorial Structures

If the objectives go beyond discovering which effects are non-zero,
an important idea is that of hidden replication - the replication
needed is in the levels of individual factors and combinations of
pairs of factors.

Consider r replicates of a 23 factorial experiment. Write the model
for treatment effects as

trst = pr + qs + rt + (pq)rs + (pr)rt + (qr)st + (pqr)rst ,

with p0 + p1 = 0, (pq)00 + (pq)01 = 0 and (pq)00 + (pq)10 = 0,
etc.



Factorial Structures

The effects are estimated as follows:

p̂1 =
1

2
(ȳ1·· − ȳ0··)

(̂pq)11 =
1

4
(ȳ00· + ȳ11· − ȳ01· − ȳ10·)

(̂pqr)111 =
1

8
(ȳ001 + ȳ010 + ȳ100 + ȳ111

−ȳ000 − ȳ011 − ȳ101 − ȳ011)

Each of these has variance σ2

8r .



Factorial Structures

The effect of P with the other factors at their high levels is

t111 − t011 = p1 − p0 + (pq)11 − (pq)01

+(pr)11 − (pr)01 + (pqr)111 − (pqr)011,

estimated with variance σ2

r .

If a model without the three-factor interaction is used, the variance
becomes 3σ2

4r .

If a main effects only model is used, the variance becomes σ2

4r .

Fitting reduced models without some of the factorial effects has
the following advantages:

I Simplicity of interpretation and improved understanding.

I Lower variances of estimated comparisons and predicted
responses.



Factorial Structures

Thus using factorial treatments, rather than doing separate
experiments with each factor has three advantages:

I interactions can be discovered;

I main effects are estimated more efficiently if there are no
interactions;

I conclusions drawn about main effects are more general, as
they apply to all levels of the other factors.



Nearly Saturated Structures

To investigate the effects of temperature (coded as X1) and
pressure (coded as X2) on the yield of a reaction, the first
experiment might use the design:

Treat X1 X2

1 −1 −1
2 −1 1
3 1 −1
4 1 1
5 0 0
5 0 0
5 0 0
5 0 0



Nearly Saturated Structures

We obtain the following analysis of variance:

Source df

TemperatureL 1
PressureL 1
TempL×PressL 1
Residual: 4:

Lack of fit 1
Pure error 3

Total 7



Nearly Saturated Structures

From the randomization viewpoint, we obtain 4 orthogonal
treatment contrasts:

Source df

Treatments: 4:
TemperatureL 1
PressureL 1
TempL×PressL 1
Lack of fit 1

Residual 3

Total 7



Nearly Saturated Structures

This makes clearer the meaning of “pure error” - it is just the
usual unbiased estimator of σ2.

If lack of fit, or the interaction, are close to zero, should we replace
the unbiased estimator of σ2 with a biased one including these
terms in the residual?

No, unless there is some reason why we must get as good an
estimate from this small experiment as possible. This is rarely the
case.



Nearly Saturated Structures

Block I Block II
Treat X1 X2 Treat X1 X2

1 −1 −1 1 −1 −1
2 −1 1 2 −1 1
3 1 −1 3 1 −1
4 1 1 4 1 1
5 0 0 5 0 0
5 0 0 5 0 0

How many degrees of freedom for pure error are there?



Nearly Saturated Structures

Only the randomization analysis gives a sensible answer.

Source df

Blocks 1
Treatments: 4:

TemperatureL 1
PressureL 1
TempL×PressL 1
Lack of fit 1

Residual: 6:
“Non-additivity” 4
“Pure error” 2

Total 11



Saturated Structures
To study the effects of catalyst (two types), amount of chemical A
(low/high), amount of chemical B (low/high), stirring (yes/no)
and shaking (yes/no) on a chemical system, a single replicate of 25

factorial treatment combinations was run in a completely
randomized design.

Source df

Catalyst 1
Chemical A 1
Chemical B 1
Stirring 1
Shaking 1
2-factor interactions 10
3-factor interactions 10
4-factor interactions 5
5-factor interaction 1
Residual 0

Total 31



Saturated Structures

We get best linear unbiased estimators (BLUEs) of all factorial
effects, but no estimator of σ2 with which to carry out inference.

Possible solutions:

1. Do nothing! Exploratory analysis is all we need, e.g. Normal
plot of estimated effects.

2. Estimate σ2 from the small effects in the Normal plot. This is
a biased estimator.

3. Assume a priori that high order interactions will be zero. This
is a strong assumption and several small, but non-zero, effects
can cause unquantifiable bias. Given this assumption, 2
replicates of a half-fraction would be better.



Saturated Structures

4. Use a prior estimate of σ2. This requires a strong assumption.

5. Use a prior distribution for σ2. The experiment provides no
information about σ2, so this still requires a fairly strong
assumption.

6. Perform a fully Bayesian analysis, with priors on each effect
and updating all priors using Bayes’ Theorem.

I recommend 1 or 6, depending on what conclusions we want to
draw.



Supersaturated Structures

These allow us to study more factors than there are experimental
units, e.g. crash testing cars.

No sensible randomization analysis is possible and perhaps a fully
Bayesian analysis is the only sensible one.



Quantitative Treatment Structures

Consider an experiment in enzyme kinetics with 3 replicates at
each of the substrate concentrations 10, 20, 40, 80, 160,
completely randomized.

Biochemical theory implies

E (Yij) =
θ0xi
θ1 + xi

.

It is natural to fit this by nonlinear least squares (NLLS) - this
gives estimates of θ0, θ1 and σ2.



Quantitative Treatment Structures

But this is not an unbiased estimator of σ2. We get this from the
randomization analysis. The difference represents lack of fit.

Source df

Treatments: 4:
Michaelis-Menten model 1
Lack of fit 3

Residual 10

Total 14



Quantitative Treatment Structures

The Michaelis-Menten component in the analysis of variance does
not correspond to a linear contrast, but the interpretation is the
same.

If we use a randomized complete block design, we simply add a
random effect for blocks as usual.

Source df

Blocks 2
Treatments: 4:

Michaelis-Menten model 1
Lack of fit 3

Residual 8

Total 14



Quantitative Treatment Structures

The error structure of NLLS has been questioned and instead a
transform-both-sides model suggested:

Y
(λ)
ij =

(
θ0xi
θ1 + xi

)(λ)

+ εij ,

where

Y (λ) =

{
Y λ−1

λ , λ 6= 0;
logY , λ = 0.

This is a good idea, but can be difficult to fit in practice.

Randomization theory allows a two-stage analysis which greatly
simplifies the computation.



Quantitative Treatment Structures

The assumption now is that unit and treatment effects are additive
on some transformed scale, i.e.

y
(λ)
i(r) = µ+ tr + ei .

We fit the model
Y

(λ)
i(r) = µ+ tr + εi ,

i.e. estimate a Box-Cox transformation for a completely
randomized design model.

Now fixing λ̂, use NLLS to fit

Y
(λ̂)
ij =

(
θ0xi
θ1 + xi

)(λ̂)

+ εij ,

adjusting the residual term by one df.


