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How Much Replication?

Example A clinical trial was to be conducted to compare the effect
of hawthorn berries on blood pressure with a control. The main
question was how many patients should be given each treatment?

This is the question about design of experiments which
statisticians are most frequently asked - how many replicates of
each treatment are needed?

To answer it, we need to have clearly defined objectives - how
many replicates are needed to do what?



Example

In the example, the objective is to estimate (and test) the
difference between the two treatments. A 95% confidence interval
(CI) for the difference is given by

ȳC − ȳT ± tn−p;0.975 ×

√
s2

nC
+

s2

nT
,

where n− p is the residual d.f. and nC and nT are the replicates of
the treatments.

Randomization ensures that the estimates are unbiased and so the
CI will be centred in the right place. How do we make the CI
narrower?



Example

We can get more precise estimates by:

I decreasing tn−p;0.975 by increasing residual d.f. - should always
try to ensure 10-15 but little is gained by having > 20 (see t
tables);

I decreasing s2 by introducing more blocking to remove the
larger sources of variation between units;

I increasing nC and/or nT .



Example

Clearly, unless costs are different, we should take nC = nT .

To make any further decisions we need a reliable prior estimate of
s2. We can usually get this from previous studies.

In the example, experience suggests s2 ≈ 400 over the whole
population, but s2 ≈ 100 if we arrange people into pairs according
to age (blocks of size 2).

We can calculate the width of the CI for various numbers of
replicates, with and without blocking.



Example

No Blocking (s2 ≈ 400)

nC = nT n − p tn−p;0.975

√
2s2

nT
1
2 CI width

2 2 4.303 20.00 86.1
4 6 2.447 14.14 34.6
6 10 2.228 11.55 26.7
8 14 2.145 10.00 21.4

10 18 2.101 8.944 18.8
12 22 2.074 8.165 16.9
14 26 2.056 7.559 15.5
16 30 2.042 7.071 14.4
18 34 2.032 6.667 13.5
20 38 2.024 6.325 12.8



Example

Blocking (s2 ≈ 100)

nC = nT n − p tn−p;0.975

√
2s2

nT
1
2 CI width

2 1 12.71 10.00 127
4 3 3.182 7.071 22.5
6 5 2.571 5.774 14.8
8 7 2.365 5.000 11.8

10 9 2.262 4.472 10.1
12 11 2.201 4.082 8.98
14 13 2.160 3.780 8.16
16 15 2.131 3.536 7.54
18 17 2.110 3.333 7.03
20 19 2.093 3.162 6.62



Example

The same ideas extend to more complex treatment structures.

In an experiment to compare two new drugs (A and B) for
controlling blood pressure with a control (C) and with each other,
experience suggests that s2 ≈ 100. It is required to estimate the
difference in effect between A and B to within ±2 and the
difference between the average effect of A and B and the effect of
C to within ±6.



Example

s.e.(ȲB − ȲA) =

√
2s2

nA
≤ 1

⇒ 200

nA
≤ 1

⇒ nA ≥ 200.

s.e.

{
ȲC −

1

2
(ȲA + ȲB)

}
=

√
s2

nC
+

1

4

2s2

200
≤ 3

⇒ 100

nC
+

1

4
≤ 9

⇒ nC ≥ 11.4.

So use nA = nB = 200 and nC = 12.



Quantitative Treatment Levels

Example: A new enzyme has been developed which has potential
industrial uses. An experiment is going to be conducted to study
the effect of pH on the activity of the enzyme. The main
objectives are to find the optimum pH and to study how robust the
enzyme is to changes in pH. Which pH levels should be studied
and how many runs should be made at each?



Quantitative Treatment Levels

When the treatments are levels of a continuous variable, it is often
useful to fit response curves. Possible objectives in fitting curves:

I To estimate the parameters of a known (from scientific
theory) model.

I To discriminate between a number of theoretical models.

I To predict the response, or changes in response, over a range
of levels of the stimulus variable.

I To identify the level of stimulus which maximizes the response.

I To obtain a simple description of the relationship between the
response and the stimulus.



Quantitative Treatment Levels

The design implications of the different objectives must be
considered. In particular, we should ask:

I Which model(s) will we fit?

I Which quantities (parameters, functions of parameters) do we
want to estimate from the models?

I Is the model mechanistic or empirical?

Mechanistic models, suggested by scientific theory, are usually
nonlinear.



Quantitative Treatment Levels

We often have to use empirical models, where the form of
relationship is not known. In this case the response functions used
are often (but not always) linear, e.g.

E (Y ) = µ+ tr = β0 + β1x + β11x2;

E (Y ) = β0 + β1
√

x + β11x ;

E (Y ) = β0 + β1 log x .

In general, we will write the linear model in matrix form as

E (Y) = Xβ,

so that
V(β̂) = σ2(X′X)−1.



Simple Linear Model

Example: When studying the environmental impact of cattle
grazing it may be assumed that there is a linear relationship
between nitrogen content of feed and nitrogen content of faeces.
Consider estimating a specific parameter from this model, namely
the slope. In the simple linear regression E (Y ) = β0 + β1x we get
the best estimate of the slope by minimizing V (β̂1).

V (β̂1) = σ2/

n∑
i=1

(xi − x̄)2

and so we maximize
∑n

i=1(xi − x̄)2.



Simple Linear Model

We do this by

1. increasing the number of experimental units;

2. for a fixed n, increasing the range of x values;

3. for a fixed range, taking half of the units at each end of the
range.

Step 3 is an application of optimal design theory.



Quadratic Model

If there is more than one parameter of interest, the design which is
optimal for estimating one parameter will usually be sub-optimal
for estimating another.

In our initial example, we may decide to fit a quadratic model,

E (Y ) = θ0 + θ1(pH) + θ11(pH)2,

between pH 4 and 5.5.

It is good practice, for numerical stability and ease of
interpretation, to work with coded levels of continuous treatment
factors, so that the coded levels are between –1 and 1. Here, we
use x = pH−4.75

0.75 and fit the model

E (Y ) = β0 + β1x + β11x2.



Quadratic Model

Consider a number of alternative designs with 12 experimental
units.

Design V (β̂1)/σ2 V (β̂11)/σ2

6(−1, 1) 0.083 ∞
3(−1), 6(0), 3(1) 0.167 0.333

4(−1, 0, 1) 0.125 0.375
5(−1), 2(0), 5(1) 0.1 0.6
3(−1,−1

3 ,
1
3 , 1) 0.15 0.422

(−1,− 9
11 ,−

7
11 ,−

5
11 ,−

3
11 ,−

1
11 ,

1
11 ,

3
11 ,

5
11 ,

7
11 ,

9
11 , 1) 0.212 0.576

Different designs minimize the variances of different parameters.
We might also consider covariances. We need a design efficiency
criterion, a scalar function of the design matrix X which can be
used to compare designs.



Design Efficiency Criteria

The appropriate criterion for comparing designs for a specific
experiment should be closely related to the objectives of that
experiment.

Several criteria are related to “generally useful” objectives.

I Weighted-A-efficiency minimizes a weighted mean of the
variances of the parameter estimates,

w1V (β̂1) + · · ·+ wpV (β̂p).

This is equivalent to minimizing

tr{A(X′X)−1},

where A is a diagonal matrix with ith diagonal element wi .



Design Efficiency Criteria

I A-efficiency, with equal weights, is sometimes defined, but is
scale-dependent, e.g. designs have a different ordering if the
factors are coded or uncoded. Hence, there is no such thing
as an A-optimal design, only an A-optimal design with respect
to a particular parameterization.

I c-efficiency minimizes the variance of the estimate of a linear
function of parameters, V (c′β̂). This is equivalent to
minimizing c′(X′X)−1c.



Design Efficiency Criteria

I L-efficiency minimizes a weighted mean of the variances of the
estimates of several linear functions of parameters,

w1V (c1
′β̂) + · · ·+ wqV (cq

′β̂).

This is equivalent to minimizing

w1c1
′(X′X)−1c1 + · · ·+ wqcq

′(X′X)−1cq

= tr{C′(X′X)−1C} where C = [
√

w1c1 · · ·
√

wqcq]

= tr{L(X′X)−1} where L = CC′



Design Efficiency Criteria

I E-efficiency minimizes the maximum variance of an estimate
of a (scaled) linear function of the parameters

max
c

V (c′β̂)

c′c
,

which is equivalent to minimizing

max
c

c′(X′X)−1c

c′c
.



Design Efficiency Criteria

I D-efficiency minimizes the volume of a joint confidence region
of the parameters, which is equivalent to minimizing
|(X′X)−1|. This is equivalent to maximizing |X′X|. This last
equivalence makes the D criterion particularly easy to
compute.

I Ds -efficiency minimizes the volume of a joint confidence
region of a subset of the parameters, which is equivalent to
minimizing |[(X′X)−1]22|, the part of |(X′X)−1| corresponding
to the same subset of the parameters. This is equivalent to
maximizing

|[X′X]|
|[X′X]11|

.

There is a large body of optimal design theory, especially with
regard to D efficiency. We must always remember that its
relevance to a particular experiment depends on the objectives of
that experiment.


