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Optimal Choice of Treatments

For linear models we can find optimal designs directly, e.g. the
D-optimal design for a quadratic model with x ∈ {−1, 0, 1}.
Assume that the proportions of points at the three levels are p−,
p0 and p+ respectively.
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Optimal Choice of Treatments

⇒ |X′X| = 4n3p−p+(1− p− + p+)

∝ p−p+(1− p− + p+).

Differentiating with respect to p− and equating to zero gives

p+ = 0 or 1− 2p− − p+ = 0

and differentiating with respect to p+ and equating to zero gives

p− = 0 or 1− 2p+ − p− = 0.

Hence maximum is at

p+ = 1− 2p− ⇒ 3p− − 1 = 0⇒ p− =
1

3

⇒ p− = p0 = p+ =
1

3
.



Notes

I It can be shown using the General Equivalence Theorem that
this design is in fact D-optimal for x ∈ [−1, 1]. This beautiful
theorem makes finding D-optimal designs even simpler, but
cannot be used for many other criteria.

I The D-optimal design does not allow for detection of lack of
fit. There is no reason why it should, since the D criterion
assumes that the model is correct.

I This design is also weighted-A-optimal, with weights 0, 0.8
and 0.2 for β0, β1 and β11 respectively. These are very
sensible weights, since we are interested in comparing levels
and the scale of 2β1 corresponds to the scale of β11.



Design for Nonlinear Models

Example: A food scientist is studying a reaction which causes the
gelatinization of starch. The rate of reaction is known to be first
order, i.e. if temperature, pH, etc. are held constant, the rate at
which the substrate molecules are converted to molecules of
product is constant. Chemists write S

k−→ P.

This means

dS

dt
= −kS

⇒
∫

dS

S
= −

∫
kdt ⇒ log S = −kt + b

⇒ S = Ae−kt

An experiment is to be performed to determine the rate of the
reaction. Which times should the reaction be run for?



Design for Nonlinear Models

The first thing to consider in dealing with nonlinear models is what
is a reasonable error structure to assume?

Consider two possibilities for the example:

I errors are multiplicative and approximately log-Normal;

I errors are additive and approximately Normal.

Sometimes consideration of the error structure will allow
linearisation of the model, but linearisation should be done only for
this reason, not just for convenience.



Design for Nonlinear Models

With linear models, we can study the variances of parameter
estimates for different designs, but for nonlinear models the
variances of parameter estimates depend on the (unknown) values
of the parameters.

Two possible ways round the problem:

I compare designs for a range of specific values of parameters
and find one which is fairly good across the range;

I use a prior distribution for the parameters and find a design
which maximises the expected value of some design criterion
over the prior.

The first method is computationally simpler, but might not allow
us to find a good design.



Design for Nonlinear Models

Assume that we will estimate the parameters, θ, using maximum
likelihood. Approximately,

θ̂ ∼ N
[
θ, {I(θ,X)}−1

]
,

where

I(θ,X) =
1

σ2
M(X,θ)

is the expected Fisher information matrix.



Design for Nonlinear Models

Most criteria are related to {M(X,θ)}−1. Criteria corresponding
to the common criteria for linear models can be developed.

I Pseudo-Bayesian (or average) weighted-A-efficiency chooses a
design X to minimise

φ(X) =

∫
tr
[
A{M(X,θ)}−1

]
p(θ)dθ.

I Pseudo-Bayesian D-efficiency maximises

φ(X) =

∫
log{|M(X,θ)|} − p(θ)dθ.



Notes

I For linear models M(X,θ) = X′X does not depend on β and
so the pseudo-Bayesian criteria reduce to
weighted-A-efficiency, D-efficiency, etc.

I If the parameters are estimated using nonlinear least squares,
the usual first order approximation to the covariance matrix of
the parameter estimates is also {I(θ,X)}−1.



It is rarely possible to find the optimal design analytically; a general
grid search is usually used. This is computationally intensive.

The pseudo-Bayesian optimal design rarely turns out to have
simple rational proportions of points at a few values of x .

Rounding of the design will be necessary. This will be acceptable if
the number of experimental units is considerably greater than the
number of distinct levels of x .

For small designs it might be better to use an exchange algorithm -
see next chapter.



Bayesian Design

Since an informative prior distribution is being used for the design,
it seems logical to also use it for a fully Bayesian analysis.

It is difficult to make general progress. Usually we assume that the
posterior variance matrix will be well approximated by{

1

σ2
R + I(θ,X)

}−1
,

where the prior distribution of θ has covariance matrix σ2R−1.

Hence criteria corresponding to the standard optimality criteria will
be based on {R + M(X,θ)}−1.



Bayesian Design

In a Bayesian context it is natural to derive design criteria from a
decision theoretic viewpoint.

A quadratic loss utility function,

U(X) = −(θ̂ − θ)′L(θ)(θ̂ − θ)

gives expected utility

E{U(X)} = −E{(θ̂ − θ)′L(θ)(θ̂ − θ)}.

If θ̂ is an unbiased estimator of θ

E{U(X)} ∝ −
∫

tr{L(θ){R + M(X,θ)}−1}p(θ)dθ

and maximising expected utility is the same as maximising
Bayesian L-efficiency. If L(θ) is diagonal, we have Bayesian
weighted-A-efficiency.



Bayesian Design

Another utility function is the gain in Shannon information or,
equivalently, the Kullback-Leibler distance between the posterior
and prior

U(X) = log

{
p(θ|y,X)

p(θ)

}
.

Since the prior does not depend on the design, the expected utility
can be written as

E{U(X)} ∝
∫

log{p(θ|y,X)}p(y|θ)p(θ)dθ.

It can be shown that this can be approximated as

E{U(X)} ∝
∫

log {|R + M(X,θ)|} p(θ)dθ.

We will refer to this as Bayesian D efficiency.



Bayesian Design

Even from a Bayesian perspective, it is not immediately obvious
that these methods are correct:

I The prior used for the design can be purely personal to the
experimenter and need not be defended in public; indeed,
nobody but the experimenter need ever know that it was used.

I The analysis might have to be done using several different
priors, perhaps including vague priors, as the results might be
published, presented to decision makers, or otherwise used to
convince other people than those involved in planning the
experiment.

Thus using an informative, personal, prior for the design, but
assuming a vague prior for the analysis might be more appropriate.

With a vague prior R + M(X,θ) ≈M(X,θ) and the design
problem becomes equivalent to that for maximum likelihood
estimation.


