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Example

A bioreactor is to be designed for the enzymatic synthesis of
derivatives of sucrose. The physical design of the bioreactor and
the conditions applied to the substrate have to be optimized. A
number of questions can be asked: which factors and how many
should be studied? Which levels of the factors should be used?
Should all combinations of all levels be used? How many replicates
of each combination should be run?



Choice of factors

In the example, the experimenters quickly identified five factors:
pH, total sugar, donor:acceptor ratio, temperature and mix speed.
Should these all be varied in one experiment, or should a few be
studied first?

It is good practice to get experimenters to list all factors which
might possibly have an effect before deciding which ones to
actually vary in the experiment.



Choice of factors

The number of factors actually varied will depend on the resources
available for the experiment, the amount of blocking needed and
the number of levels used for each factor. The only restriction on
the number of factors used is usually the total number of units
available. Sufficient degrees of freedom should be left for
estimating error.

A useful concept is the resource equation:

n =
n

nb
+ p + nr ,

where n is the number of units, nb is the number of units in each
block, p is the number of parameters for the treatment model and
nr , the residual d.f., should usually be about 10-20.



Choice of levels

For qualitative factors when fixed effects are of interest, all
categories have to be used, e.g. if new and standard drugs and a
placebo are of interest, all must be used in the experiment.

If random treatment effects are of interest, a large enough sample
from the population must be chosen to get a reliable estimate of
the variance component. How large is this? In practice, relatively
small samples are often used.

For continuous factors, the number of levels chosen should usually
be the fewest which will meet the objectives, as when a single
continuous factor is under study.



Choice of levels

I Two levels allow a simple change in response to be detected
and might be appropriate at early, exploratory, stages, if the
response can be assumed to be monotonic, i.e. there will not
be a turning point between the two levels.

I Three levels allow curvature to be checked and optimal levels
to be estimated, but only assuming a symmetrical response
about the optimum. This is often appropriate at early stages
in research and sometimes later, if the location of the
optimum can be checked using confirmatory runs.



Choice of levels

I Four levels allow symmetry of the response about the
optimum to be checked. They are often appropriate at later,
modelling, stages in research.

I Five levels do the same as four, but slightly less efficiently.
Sometimes they are useful because they allow centre points
(e.g. standard conditions) to be included in design.



Choice of combinations

The factors used and their levels define the set of factorial
combinations. However, sometimes not all combinations are run
because:

I some combinations are impossible, dangerous or unethical;

I the required information can be obtained using a fractional
replicate.



Choice of replication

As usual the number of replicates should be chosen to ensure the
effects of interest (main effects and interactions) are estimated
with sufficient precision and there are a reasonable number of
residual degrees of freedom. Usually, (as near as possible) equal
replication is appropriate.



Incomplete Factorial Structures

Example: An experiment is to be carried out to test the
robustness of a bioassay to changing a number of factors from
their usual levels. Five factors were identified: percentage of
acetonitrile, flow rate, pH of the mobile phase, octylamine
concentration and temperature. Each was to be used at two levels,
target and off-target. The experimenters do not want to perform
more than 16 assays. What should our advice be?



Incomplete Factorial Structures

If high order interactions can be assumed to be zero or interest is
only in very large effects, even a single replicate might be
considered excessive, e.g. if three-factor and higher order
interactions are negligible, the 25 design gives:

Source df

Main effects 5
2-factor interactions 10
Error 16

Total 31



Incomplete Factorial Structures

Is it possible to choose half of the 32 combinations to get the
following analysis of variance?

Source df

Main effects 5
2-factor interactions 10
Error 0

Total 15

Yes, but the 16 combinations must be chosen with care.



Incomplete Factorial Structures

When thinking about hidden replication, we noted that to estimate
main effects we only needed to look at the one-way table of means,
to estimate two-factor interactions we needed to look at two-way
tables of means, etc. To get good estimates we need to consider:

I Efficiency: estimate the effects with low variance.
I Near orthogonality: obtain low correlations between pairs of

effects, because:
I ensures simplicity of interpretation;
I needed for efficiency.



Incomplete Factorial Structures

I To ensure efficiency of estimation of the main effect of a
factor, we need equal replication of the levels of that factor.

I To ensure orthogonality of the estimated main effects, we need
equal replication of every combination of every pair of factors.

I To ensure efficiency of estimation of the interaction of two
factors, we need equal replication of each combination of
levels of these two factors.

I To ensure orthogonality of estimated main effects and
estimated two-factor interactions, we need equal replication of
every combination of every set of three factors.

I To ensure orthogonality of estimated two factor interactions,
we need equal replication of every combination of levels of
every set of four factors.

I and so on . . .



Incomplete Factorial Structures

In general, try to get (as near as possible) equal replication for
every combination of levels of all sets of factors for as large sets as
possible.

In 16 runs it is possible to get all projections onto four factors with
equal replication.

A B C D E
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0



Incomplete Factorial Structures

Note that fractional replication only works because we make
assumptions about terms in the full model being negligible. If the
full model were appropriate, our estimates of effects would be
biased as follows:

E (µ̂) = µ+ (abcde)11111

E (â1) = a1 + (bcde)1111
...

E ((̂ab)11) = (ab)11 + (cde)111
...



Incomplete Factorial Structures

Regular fractional replicates are those which are 1/p fractions,
where p is a power of the lowest common multiple of the number
of levels of each factor. For two-level designs regular fractions are
half replicates, quarter replicates, etc.

ABCDE is known as the defining contrast, denoted I ≡ ABCDE .
A and BCDE are said to be aliases, or A is said to be aliased with
BCDE. The aliasing pattern for regular two-level fractional
replicates is particularly simple and can be obtained from the
defining contrast. Simply multiply both sides of the defining
contrast, using the rule that for any effect P, P2 = I .



Incomplete Factorial Structures

Note that the columns in the design matrix corresponding to, for
example, A and BCDE have identical patterns. This allows us to
obtain regular fractional replicates simply by choosing the defining
contrast.

Many published lists of regular fractions are available and many
packages have routines for constructing regular fractions.

Regular fractions are not always suitable, especially with more than
two levels. Then, there are various ways of searching for irregular
fractions. If at least two-factor interactions are of interest, these
usually involve using search routines.



Factor screening experiments
In most experiments fractions will be chosen so that at least
two-factor interactions can be estimated. Designs which only allow
main effects to be estimated are used when the objective is factor
screening - finding a few important factors among a large number
of unimportant factors.

Example: Find a design to screen the main effects of 7 two-level
factors in 8 runs.

A B C D E F G
0 0 0 0 0 0 0
0 0 1 1 1 1 0
0 1 0 1 1 0 1
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 0 1 0 1 0 1
1 1 0 0 1 1 0
1 1 1 1 0 0 0



Factor screening experiments

For two-level factors, regular fractions exist only for the number of
experimental units equal to a power of 2. Other designs, based on
orthogonal arrays of strength 2, are very popular in practice.

An orthogonal array of strength t is an n × q array of symbols such
that any n × t submatrix contains each possible row vector of t
symbols an equal number of times.

Orthogonal arrays can be used as screening designs. For example,
for two-level factors they exist for numbers of units being (almost)
any multiple of 4 (Plackett-Burman designs).



Factor screening experiments

Plackett-Burman design for 11 factors in 12 runs.

A B C D E F G H I J K

+ + - + + + - - - + -
+ - + + + - - - + - +
- + + + - - - + - + +
+ + + - - - + - + + -
+ + - - - + - + + - +
+ - - - + - + + - + +
- - - + - + + - + + +
- - + - + + - + + + -
- + - + + - + + + - -
+ - + + - + + + - - -
- + + - + + + - - - +
- - - - - - - - - - -



Experiments with Quantitative Factors

Example: In the example on the enzymatic synthesis of derivatives
of sucrose, at the beginning of the lecture, it was decided to run an
experiment to optimize the reaction conditions. Three factors were
to be varied: pH, total sugar and donor:acceptor ratio. Because of
the cost of the substrate, only 18 runs could be afforded. Which
combinations of which levels should be used?

If we are going to fit a polynomial model to our data, the standard
arguments about projection no longer hold. e.g. our primary model
is often the second order polynomial,

E (Y ) = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

k−1∑
i=i

k∑
j=i+1

βijxixj .



Experiments with Quantitative Factors

For each main effect, we are primarily interested in 2 df,
corresponding to linear and quadratic components. For each
interaction, we are primarily interested in 1 df, corresponding to
the linear×linear component of the interaction. We require only a
subset of the projections onto two factors.

The choice of how many and which levels of the factors to use is
usually the same as for a single quantitative factor. In practice,
three, four or five levels are usually enough. At the early stages of
experimentation, if the effect of a factor can be assumed to be
monotonic, two levels may be used. For two levels the design
requirements are exactly the same as for two level qualitative
factors.



Three level designs

Code the factors so that the three levels are −1, 0 and 1. For each
factor, as with a single factor, some compromise between linear
and quadratic effects is necessary and near-equal replication of
each level is often sensible. For interactions, we require high and
(as near as possible) equal replication of the (±1,±1)
combinations for each pair of factors.

The central composite design is the most widely used response
surface design. It is made up from:

I the two-level factorial points, (±1, . . . ,±1), or a fraction of
them;

I the axial points, (±1, 0, . . . , 0), etc.;

I some centre points, (0, . . . , 0).



Four level designs

Good designs can be obtained from two level designs by replacing
each four level factor with a pair of two level pseudo-factors, as
follows.

X1 A B

−1 −1 −1
−1/3 −1 +1
+1/3 +1 −1

+1 +1 +1



Four level designs

The two pseudo-factors give three contrasts, A, B and AB.
However, the contrasts we are interested in are those which
correspond to the linear and quadratic effects of the four level
factor. These are:

X1L = (2A + B)/3

X1Q = AB.

An interaction contrast comes from direct multiplication of the
main effect contrasts, e.g. if X2 has pseudo-factors C and D,

X1L × X2L = (4AC + 2BC + 2AD + CD)/9.

We then choose a good four level design by choosing a good two
level design for the pseudo-factors. Note that it is not necessary to
estimate all two-factor interactions for the pseudo-factors.



Five level designs

The central composite design can be modified by bringing in the
corner points to (±γ, . . . ,±γ) for γ < 1.

It is then made up from:

I the two-level factorial points, (±γ, . . . ,±γ), or a fraction of
them;

I the axial points, (±1, 0, . . . , 0), etc.;

I some centre points, (0, . . . , 0).

The levels are often recoded, so that the factorial points are at
(±1, . . . ,±1) and the axial points at
(±1/γ, 0, . . . , 0) = (±α, 0, . . . , 0), etc.



Search Algorithms

In many experiments, especially with quantitative factors, regular
fractions and other standard constructions are not available, or not
appropriate.

Then an optimal design approach is useful.

Criteria can be the same as for a single factor, e.g.
weighted-A-efficiency or D-efficiency, but criteria which allow for
model uncertainty are more useful, e.g. a weighted average
D-efficiency over a suitable set of candidate models.

Direct optimization is rarely possible. Instead a search routine is
usually used.



Search Algorithms

Start by defining a set of candidate points, i.e. possible treatments,
from which we are going to try to find an optimal subset of size n.

Often the candidate points will be a full set of factorial points, e.g.
3q or 5q.

Many algorithms are available for searching through the candidate
points. The most basic, of which many modifications are possible,
is the Fedorov exchange algorithm.



Search Algorithms

1. Generate a randomly chosen set of n points.

2. If the design is singular (i.e. doesn’t allow the model to be
fitted), go to 1.

3. Evaluate the criterion for the starting design, which becomes
the current design.

4. For every possible exchange of a point in the current design
with a point in the candidate set, evaluate the criterion.

5. If any exchange improves the current design, accept the
exchange which gives the largest improvement to create the
new current design and go to 4.

6. The current design is returned.

It is usual to run the design with several restarts, or tries.



Search Algorithms

Many modifications are possible, e.g.

I Instead of finding the optimal exchange, find the optimal
point(s) to add, then the optimal point(s) to delete.

I Allow excursion, i.e. make several exchanges before evaluating
the new design.

I Accept the best exchange even if it makes the worse by a
small amount, the acceptable amount decreasing as the
algorithm continues.

I Simulated annealing accepts any exchange with small
probability even if it makes the design worse, this probability
decreasing as the algorithm continues.

I Other stochastic search algorithms, such as genetic
algorithms, have been proposed.



Search Algorithms

For most fairly standard design problems the simplest algorithms
are to be recommended because:

I They run more quickly, so more tries can be made.

I They do not require the choice of tuning constants.

I They can be used interactively, for example to modify the
criterion to eliminate undesirable features of the designs
produced.

The most important point is that none of these methods is perfect.
They should be considered to be just ways of generating
reasonable designs for discussion with the experimenters.


