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Blocking

When patterns of likely variation among units are identified, the
units are grouped into blocks of similar units. Units within a block
should be as near homogeneous as possible.

Examples

I In field, glasshouse, or some laboratory, experiments units
which are close together in space might form a block.

I In laboratory or industrial experiments units which are close
together in time might form a block.

I In animal experiments, animals from the same litter might
form a block.

I In clinical trials, patients with similar ages might form a block.



Blocking

The initial definition of blocks is based entirely on the knowledge
about the units. The number of treatments to be used is not
relevant.

Sometimes there is flexibility, e.g. field experiments, sometimes
there is little, e.g. animal experiments.



Information from blocked experiments

The objective of blocking is to get more precise comparisons of
treatments by eliminating differences between blocks from the
estimated treatment comparisons.

Since the information from the units within blocks stratum is by
far the most important, we will design experiments to maximize
this information.

Most of the information for comparing treatments comes from
comparing treatments which are in the same block (e.g. paired
samples t-test).



Example

Compare 6 treatments in 2 blocks, each of 5 units.

Block
I II

1 1
2 2
3 3
4 4
5 6

(X′X)−1X′ =
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Obtaining blocked designs

Example: In a variety trial, 6 varieties have to be compared. The
field has been split up into 6 blocks of 4 plots each. How should
varieties be allocated to the blocks?

In the randomized complete block design, treatment comparisons
are orthogonal to block effects because each treatment appears
equally often in each block. Since X′X is then block-diagonal,
there is no loss of information, i.e. all information on treatment
comparisons appears in the units stratum.

In incomplete block designs treatment comparisons are not
orthogonal to block effects. The designs should be chosen to be as
nearly orthogonal as possible, so that as much of the information
on the important treatment comparisons as possible appears in the
units stratum.



Unstructured treatments

If all pairwise comparisons are of interest, then each treatment
should appear as near as possible equally often in each block.

Another useful property is balance. A design is balanced if all pairs
of treatments can be compared equally precisely.

In designs with equally sized blocks balance is achieved when each
pair of treatments occur together in blocks equally often. Such
designs are called balanced incomplete block (BIB) designs.



Unstructured treatments

If a BIB design is not available, the design should be chosen to be
as nearly balanced as possible. This implies that

I each pair of treatments should appear together in blocks as
near as possible equally often;

I if some treatments appear more often, pairwise concurrences
of these treatments with each other, and to a lesser extent
with other treatments, should be greater.

I because of indirect comparisons, if pairwise concurrences of
one treatment with each of two others are high, pairwise
concurrences of these two others need not be high.



Efficiency factors

The efficiency of estimation of a comparison, c′t, in a blocked
design can be measured by its efficiency factor:

EF (ĉ′t) =
Vu(ĉ′t)/σ2u

V (ĉ′t)/σ2
,

where the subscript u denotes the equivalent unblocked design.
V (ĉ′t)/σ2 is obtained from X′X−1 and Vu(ĉ′t)/σ2u is obtained
from the corresponding matrix in the unblocked design.

For unstructured treatments, we might consider the efficiency
factors for all possible pairwise comparisons of treatments, ts − tr .



Unstructured treatments

We will obtain an efficient design for the introductory example.

We can have 4 replicates of each treatment.

There are 6C2 = 15 comparisons of interest.

6×4 C2 = 36 comparisons can be made within blocks.

Each pair of treatments should appear together in blocks at least
twice, 6 pairs a third time: 12 23 34 45 56 16.



Unstructured treatments

Block
I II III IV V VI
1 1 1 1 2 3
2 2 2 4 3 4
3 3 5 5 4 5
4 6 6 6 5 6

Efficiency factors:
t̂2 − t̂1 : 93.3%;

t̂3 − t̂1 : 87.0%;

t̂4 − t̂1 : 86.7%.

The blocked design is clearly better if

σ2u
σ2

>
1

0.867
= 1.153.



Unstructured treatments

For small problems, it is easy to obtain a good design by hand. For
larger problems we require a computer search.

I assume that the user will input the treatment design and the
block structure and the program will search of the optimal
arrangement of treatments to blocks.

Other methods search simultaneously for the optimal treatment
design and its optimal arrangement in blocks. This implies a fixed
blocks view, i.e. inter-block information is lost. In the
randomization view, the information is all there, but is split
between the strata.

To be able to find a design in any situation a program needs to
use:

I a criterion for deciding which design is best; and

I an algorithm for searching many possible designs.



Unstructured treatments

The first computational approach that should be considered is a
complete search. This might be feasible if there is a small number
of large blocks, but otherwise is likely to be computationally
prohibitive.

Most blocking algorithms are based on interchange algorithms:

1. Start with a random assignment of treatments to blocks;

2. Systematically interchange pairs of treatments between
blocks, keeping any interchanges which improve the design;

Usually we do this several (100?) times.



Efficiency criteria for blocking

The choice of criterion for blocking is less obvious than for
choosing a treatment design.

Consider arranging in blocks a treatment design which is much
better for estimating some treatment comparisons than others, e.g.
a design which is good for estimating main effects, but which
estimates interactions imprecisely.

Do we want the blocked design to preserve the features of the
treatment design or to compensate for the weaknesses of the
treatment design?

Many reasonable criteria use the efficiency factors for the relevant
treatment comparisons or parameters, rather than the variances.



Efficiency criteria for blocking

Partition X as [1 X1 X2], where X1 corresponds to block effects
and X2 to treatment parameters, and let R be a diagonal matrix
with elements

√
ri , where ri is the replication of treatment i . Then

a scaled information matrix for treatments is given by

A = I− R−1X′2X1(X′1X1)−1X′1X2R
−1.

The canonical efficiency factors are the eigenvalues of A and
therefore easy to compute. The corresponding contrasts are called
the basic contrasts.

In general the basic contrasts do not represent the contrasts of
interest, but in some cases they do.



Efficiency criteria for blocking

For unstructured treatments, it is often assumed that we are
equally interested in all pairwise treatment comparisons, ts − tr .

For equally replicated treatments it can be shown that:

I The harmonic mean of the canonical efficiency factors is
proportional to the harmonic mean of the efficiency factors for
pairwise comparisons. In this specific context, this particular
L-efficiency criterion is usually called A-efficiency.

I The smallest canonical efficiency factor is proportional to the
smallest efficiency factor for any contrast and thus represents
E-efficiency.

I The geometric mean of the efficiency factors is proportional to
D-efficiency.



Other blocking criteria often defined with respect to the canonical
efficiency factors are:

I M-efficiency is the (arithmetic) mean of the canonical
efficiency factors.

I S-efficiency is the mean of the squared canonical efficiency
factors.

I (M,S)-efficiency orders designs first by M-efficiency and then
by S-efficiency.



Blocking factorial designs

Example
An experiment was to be conducted on a food extrusion process
used for mixing pastry dough. The objective was to see how the
initial moisture content, feed flow rate and screw speed affected
various properties of the pastry - size and shape, strength and
colour - with a view to developing a control system. Only four runs
could be carried out in one day and day to day differences were
expected. It was decided to do a three level central composite
design with two replicates of each of the factorial points, one set of
axial points and six centre points. How should this design be
arranged in blocks?



Blocking factorial designs

Because factorial structures often lead to a large number of
treatments, incomplete blocks will often be necessary. Up to now
we have allocated treatments to blocks assuming all comparisons
are of equal importance. With factorial treatments, this is not the
case: we are primarily interested in main effects, secondarily in
two-factor interactions, and so on.

If the factors are continuous, we are primarily concerned with linear
effects, secondarily with quadratic and linear×linear effects, and so
on.



Qualitative Factors

Within each block we aim to get:

I each level of each factor appearing (as near as possible)
equally often;

I each combination of levels for each pair of factors appearing
(as near as possible) equally often;

I each combination of levels for each set of three factors
appearing (as near as possible) equally often;

I and so on.

Over all blocks we aim to get each pair of combinations of all
factors appearing together (as near as possible) equally often.



Example

Arrange a 23 factorial in 2 blocks of 4.

Block
I II

A B C A B C
0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 1

Note that the two blocks contain the half replicates with defining
contrasts I ≡ ABC and I ≡ −ABC .

Therefore, we can estimate all main effects and two-factor
interactions, but not the three factor interaction. We say ABC is
confounded with the block effect.



Interblock Information

When arranging factorial treatments in blocks we ensure that the
important contrasts (factorial effects) can be estimated at the
within-block level.

The less important effects can then be estimated at the inter-block
level.

This will usually give very little information about these effects and
so does not have any impact on how we should design experiments
beyond possibly restricting randomization of treatment groups to
blocks.



Example
Four replicates of the 23 design in blocks of 4.

By arranging each replicate in a superblock we get the following
analysis of variance:

Source of Variation df

Superblock error 3

Superblock total 3

ABC 1
Block error 3

Block total 7

A 1
B 1
C 1
AB 1
AC 1
BC 1
Error 18

Total 31



Criteria for blocking factorial designs

Lists of regular designs, like the one above, are available, as are
packages for constructing them.

More generally, we will use a complete search, or an interchange
algorithm.

The appropriate blocking criteria can be the same as for choice of
treatments, e.g. weighted-A-efficiency, D-efficiency, etc.

Given a set of comparisons of interest, it might be sensible to give
them equal weight in an L-efficiency criterion. This is equivalent to
minimizing the harmonic mean of the efficiency factors of the
comparisons of interest. This is occasionally referred to as
A-efficiency.



Criteria for blocking factorial designs

Minimizing the harmonic mean of the efficiency factors of the
parameters is sometimes referred to as A-efficiency.

Finally, minimizing the harmonic mean of the subset of the
parameters of interest (i.e. treatment comparisons) is sometimes
referred to as A-efficiency, or As -efficiency. Only this makes sense.

Continuing the analogy, for general contrasts of interest, define
weighted-M-efficiency to be a weighted mean of the efficiency
factors of the contrasts or parameters of interest (referred to as the
“weighted mean efficiency factor”). Weighted-S-efficiency and
weighted-(M,S)-efficiency could be defined in a similar way.


