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Nested Block Structures

In a simple block design, most of the information comes from
within block comparisons, so we should design the experiment to
ensure maximum information at this level.

This automatically determines what information is available at the
inter-block level and so no modifications are possible to the design
principles we have already established.



Nested Block Structures

However if the blocks themselves fall into groups or are
discretizations of a continuous variable such as space or time, it
might be sensible to restrict the randomization at this level, i.e.
when randomizing blocks to block labels. The blocks might be
grouped together in superblocks.

If the blocks are arranged so that each superblock contains each
treatment exactly once, the design is said to be resolved.
(Actually, usually a block design is said to be resolvable if it can be
arranged in this way, but this is a purely mathematical concept.)



Nested Block Structures

It is not necessarily the case that we should use a resolved design
even if one exists. Two views:

I Choose the best block design, then arrange blocks in
superblocks to get the most informative analysis ignoring
blocks;

I Keep replicates in separate superblocks and, conditional on
this, arrange treatments to blocks to get the most informative
intra-block analysis.

The latter is more commonly done in practice, but the former
seems more logical in most experiments, since it maximizes the
amount of information in the most informative stratum.



Example

A variety screening experiment is to be conducted to compare 20
varieties in 8 blocks, each containing 5 plots.

A good incomplete block design, obtained by computer search, is

Block
I II III IV V VI VII VIII

1 3 1 4 6 7 2 3
2 5 4 7 12 8 5 11
9 9 6 10 13 12 10 15

11 14 8 15 14 16 13 16
18 19 19 18 20 17 17 20



Nested Block Structures

In field experiments, and in many other experiments, blocks will be
used for management purposes, e.g. a block or blocks will be
harvested together, as well as for reducing variation.

This may make it convenient to use superblocks in the above
experiment which, however, is not resolvable. We might prefer to
force the design to be resolved and select a design from the
restricted class of resolved incomplete block designs.

Searches for resolved designs are even simpler, since the
interchanges are restricted to be between blocks in the same
superblock. We did this to obtain the following design.



Nested Block Structures

Superblock
I II

Block I II III IV V VI VII VIII

1 2 3 4 1 2 3 4
5 6 7 8 6 7 8 5
9 10 11 12 11 12 9 10

13 14 15 16 16 13 14 15
17 18 19 20 20 17 18 19

Note the (generalized) cyclic structure of this design. Until
recently, cyclic methods were used to construct such designs. They
usually allow reasonably good designs to be found, but are not
guaranteed to produce optimal designs.



Multi-way blocking

Example An experiment is to be conducted to compare 8 different
cattle feeds for their effect on the milk yield of cows. 8 animals are
available and they can be used 4 times each. Washout periods are
allowed between measuring the feeds to ensure that there is no
carry over effect between periods. We have two obvious blocking
factors - animals and time periods.



Multi-way blocking

It may be important to allow for two (or more) sources of variation
among experimental units in many types of experiment, e.g.

I In two- (or more-)colour microarray experiments, there might
be differences between frames and between colours

I In field or controlled environment experiments there might be
spatial variation in both directions.

I In human experiments, age and sex might both be important.

I In laboratory experiments, time and piece of equipment might
both be blocking factors.



Multi-way blocking

If the number of rows and the number of columns are both the
same as the number of treatments, then a Latin square design is
appropriate.

More often multiple Latin squares are appropriate. There are two
different situations:

I Separate squares have separate rows and separate columns.
The unit structure is Squares/(Rows*Columns).

I Separate squares have separate rows but the same columns -
Latin rectangles. The unit structure is Rows*Columns.

Note that the same mathematical object, e.g. a set of 4 Latin
squares, can give a suitable design for different experimental
structures.



Multi-way blocking

If the unit structure does not allow us to use a Latin square, we
can consider using a “nearly-Latin” square, e.g. by deleting a single
row or column from a Latin square. Such designs preserve the
optimality properties of Latin squares.

More generally, if we can have complete blocks in one direction, we
should simply match these with an optimal block design in the
other direction.



Multi-way blocking

We will find a design for our initial example.

First get a good block design for animals as blocks.

Animal
I II III IV V VI VII VIII

1 1 1 1 2 2 2 3
2 3 3 4 3 4 5 4
4 5 6 5 5 7 6 6
6 8 7 7 7 8 8 8



Multi-way blocking

Rearrange to get each treatment in each period.

Animal
I II III IV V VI VII VIII

Period I 1 8 6 4 2 7 5 3
II 2 1 7 5 3 8 6 4
III 4 3 1 7 5 2 8 6
IV 6 5 3 1 7 4 2 8



Multi-way blocking

Say we had only 6 animals.

A good design for columns

Animal
I II III IV V VI

1 1 1 2 3 4
2 2 3 3 4 5
4 5 6 6 5 6
8 7 8 7 7 8



and a good design for rows

Period I 1 2 3 4 5 6
II 1 2 3 4 7 8
III 1 2 5 6 7 8
IV 3 4 5 6 7 8

can be combined to produce a good row-column design

Animal
I II III IV V VI

Period I 1 2 3 6 4 5
II 8 7 1 2 3 4
III 2 1 8 7 5 6
IV 4 5 6 3 7 8



Multi-way blocking

The separate construction of an optimal row design and an optimal
column design is not guaranteed to find the optimal row-column
design, except when one of the blocking systems can be
orthogonal.

The most general methods of construction are again algorithmic.
Interchange algorithms can be run which are the same as those for
single blocking, except that now all interchanges must be allowed,
not just those between units in different blocks.

The criteria can be the same as those for blocking.

General row-column designs tend to be less “nice” than general
block designs, e.g. it is harder to achieve balance or near balance.



Multi-way blocking

It is possible, but not common in practice, to have more than two
blocking classifications.

Example: 4 insecticides for fruit trees are to be compared on 16
trees for their effects. It is thought possible that trees which had
the same treatment last year will give similar responses, as well as
those in rows and columns. A Graeco-Latin square is appropriate.

Column
I II III IV

Row I I 1 II 2 III 3 IV 4
II III 2 IV 1 I 4 II 3
III IV 3 III 4 II 1 I 2
IV II 4 I 3 IV 2 III 1



More general structures

Example (from Ch. 3): In a hen house, 32 chicken cages are
arranged in 4 stacks of 4×2 cages. 8 treatments are to be
compared. The unit structure is (Stack*Tier)/Cage.

One possibility, known as a “Trojan square” uses the same
mathematical structure as the Graeco-Latin square.

Stack
I II III IV

Tier I 1 5 2 6 3 7 4 8
II 3 6 4 5 1 8 2 7
III 4 7 3 8 2 5 1 6
IV 2 8 1 7 4 6 3 5



More general structures

This design is doubly resolved, i.e. there is a complete set of
treatments in each row and a complete set in each column.

This might not be the best way to construct the design.
Alternatively, choose an optimal design for blocks of size 2, then
rearrange blocks in rows and columns to optimize with respect to
rows and columns.

In this case, the Trojan square is optimal for unstructured
treatments, but not for factorial treatments (with several sensible
optimality criteria).

However, with unstructured treatments, there are other optimal
block designs which cannot be made doubly resolvable.

Hence, we should try to find all, or at least many, optimal block
designs and then arrange each of them in rows and columns.


