

Programa de Pós-Graduação em Biometria (Curso de Mestrado Acadêmico)

PLANO DE ENSINO

DISCIPLINA			
NOME : Introdução ao Cálculo e à Álgebra Linear			
NÚMERO DE CRÉDITOS: 3			
DISTRIBUIÇÃO DA CARGA Teórica : 45 Prática:	A HORÁRIA: Teórico-Prática:	Seminários:	Outras: horas
NÍVEL: (x) Mestrado () Doutorado	Obrigatória Optativa		
DED A DEL A CENTRO			
DEPARTAMENTO : Bioestatística			
Dioestatistica			

DOCENTE(S)

RESPONSÁVEL: Fernando Luiz Pio dos Santos

CO-RESPONSÁVEL(EIS): Paulo Fernando de Arruda Mancera

OBJETIVOS DA DISCIPLINA: (definição resumida dos objetivos, face ao contexto do Curso de Pós-Graduação)

Revisar e atualizar fundamentos básicos de Cálculo Diferencial e Integral e de Álgebra Linear.

METODOLOGIA DE ENSINO: (informar resumidamente como será desenvolvido o programa, especificando os recursos didáticos a serem empregados nas aulas)

Serão ministradas aulas teóricas e resolvidos exercícios.

CRITÉRIOS DE AVALIAÇÃO DA APRENDIZAGEM (descrever os instrumentos de avaliação que serão utilizados, com os critérios para obtenção do resultado final)

Nota da prova escrita.

CONTEÚDO PROGRAMÁTICO (descrever os assuntos a serem abordados, com as subdivisões necessárias, apresentando o programa teórico e prático)

- 1. Derivada de uma variável real.
- 1.1. Derivadas e regras de derivação.
- 2. Integral de uma variável real.
- 2.1. Integração e regras de integração.
- 3. Derivada parcial.
- 3.1. Derivadas parciais, gradiente, divergente e rotacional.

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Campus de Botucatu

- 4. Integrais iteradas.
- 5. Espaços vetoriais.
- 5.1. Espaço vetorial n-dimensional e suas propriedades. Produtos interno e vetorial, norma e distância.
- 6. Transformações lineares.
- 6.1. Transformações lineares e propriedades.
- 7. Autovalores e autovetores.
- 7.1. Autovalores, autovetores e diagonalização.
- 8. Formas quadráticas.
- 8.1. Formas quadráticas e diagonalização de formas quadráticas.

BIBLIOGRAFIA BÁSICA

MALTA, I.; PESCO, S. e LOPES, H. Cálculo a uma variável. Edições Loyola e PUC-Rio, v.1, 2002. 478p. MALTA, I.; PESCO, S. e LOPES, H. Cálculo a uma variável. Edições Loyola e PUC-Rio, v.2, 2002. 309p. BORTOLOSSI, H. J. Cálculo diferencial a variáveis. Edições Loyola e PUC-Rio, 2003. 619p. CRAIZER, M. e TAVARES, G. Cálculo integral a várias variáveis. Edições Loyola e PUC-Rio, 2002. 309p.

ANTON, H. Álgebra linear com aplicações. Bookman Companhia, 2001. 572p. LIPSCHUTZ, S. 3000 Solved Problems in Linear Álgebra. Mcgrawhill, 1989. 480p.

EMENTA PROGRAMÁTICA (resumo do conteúdo programático - cerca de 30 palavras organizado de forma que não prejudique a compreensão global do conteúdo, com o uso dos termos técnicos e científicos adequados)

Derivada de uma variável real. Integral de uma variável real. Derivada parcial. Integrais iteradas. Espaços vetoriais. Transformações lineares. Autovalores e autovetores. Diagonalização. Formas quadráticas.

Botucatu, 10 de Novembro de 2011.

Prof. Dr. Fernando Luiz Pio dos Santos
Professor Responsável